
Graph Searching with Predictions1

Siddhartha Banerjee #2

Operations Research and Information Engineering, Cornell University, USA3

Vincent Cohen-Addad #4

Google Research, Zurich, Switzerland5

Anupam Gupta #6

Computer Science, Carnegie Mellon University, Pittsburgh, USA7

Zhouzi Li #8

IIIS, Tsinghua University, Beijing, China9

10

Abstract11

Consider an agent exploring an unknown graph in search of some goal state. As it walks around the12

graph, it learns the nodes and their neighbors. The agent only knows where the goal state is when13

it reaches it. How do we reach this goal while moving only a small distance? This problem seems14

hopeless, even on trees of bounded degree, unless we give the agent some help. This setting with15

“help” often arises in exploring large search spaces (e.g., huge game trees) where we assume access to16

some score/quality function for each node, which we use to guide us towards the goal. In our case,17

we assume the help comes in the form of distance predictions: each node v provides a prediction18

f(v) of its distance to the goal vertex. Naturally if these predictions are correct, we can reach the19

goal along a shortest path. What if the predictions are unreliable and some of them are erroneous?20

Can we get an algorithm whose performance relates to the error of the predictions?21

In this work, we consider the problem on trees and give deterministic algorithms whose total22

movement cost is only O(OP T + ∆ · ERR), where OP T is the distance from the start to the goal23

vertex, ∆ the maximum degree, and the ERR is the total number of vertices whose predictions24

are erroneous. We show this guarantee is optimal. We then consider a “planning” version of the25

problem where the graph and predictions are known at the beginning, so the agent can use this26

global information to devise a search strategy of low cost. For this planning version, we go beyond27

trees and give an algorithms which gets good performance on (weighted) graphs with bounded28

doubling dimension.29

2012 ACM Subject Classification Theory of computation → Online algorithms30

Keywords and phrases Algorithms with predictions, network algorithms, graph search31

Digital Object Identifier 10.4230/LIPIcs.ITCS.2023.5232

Funding The authors gratefully acknowledge funding received from the following sources:33

Siddhartha Banerjee: NSF: ECCS-1847393, CNS-1955997, ARO: W911NF-19-021734

Anupam Gupta: NSF awards CCF-1955785, CCF-2006953, and CCF-222471835

Acknowledgements Part of this work was done when SB and AG were visitors to the Data-Driven36

Decision Making program at the Simons Institute for Theoretical Computing in Berkeley.37

1 Introduction38

Consider an agent (say a robot) traversing an environment modeled as an undirected graph39

G = (V, E). It starts off at some root vertex r, and commences looking for a goal vertex40

g. However, the location of this goal is initially unknown to the agent, who gets to know41

it only when it visits vertex g. So the agent starts exploring from r, visits various vertices42

r = v0, v1, · · · , vt, · · · in G one by one, until it reaches g. The cost it incurs at timestep t is43

the distance it travels to get from vt−1 to vt. How can the agent minimize the total cost?44

© Siddhartha Banerjee, Vincent Cohen-Addad, Anupam Gupta and Zhouzi Li;
licensed under Creative Commons License CC-BY 4.0

14th Innovations in Theoretical Computer Science Conference (ITCS 2023).
Editor: Yael Tauman Kalai; Article No. 52; pp. 52:1–52:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sbanerjee@cornell.edu
mailto:cohenaddad@google.com
mailto:anupamg@cs.cmu.edu
mailto:zhouzi188763@gmail.com
https://doi.org/10.4230/LIPIcs.ITCS.2023.52
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 Graph Searching with Predictions

This framework is very general, capturing not only problems in robotic exploration, but also45

general questions related to game tree search: how to reach a goal state with the least effort?46

Since this is a question about optimization under uncertainty, we use the notion of47

competitive analysis: we relate the cost incurred by the algorithm on an instance to the48

optimal cost incurred in hindsight. The latter is just the distance D := d(r, g) between the49

start and goal vertices. Sadly, a little thought tells us that this problem has very pessimistic50

guarantees in the absence of any further constraints. For example, even if the graph is known51

to be a complete binary tree and the goal is known to be at some distance D from the52

root, the adversary can force any algorithm to incur an expected cost of Ω(2D). Therefore53

the competitiveness is unbounded as D gets large. This is why previous works in online54

algorithms enforced topological constraints on the graph, such as restricting the graph to be55

a path, or k paths meeting at the root, or a grid [3].56

But in many cases (such as in game-tree search) we want to solve this problem for broader57

classes of graphs—say for complete binary trees (which were the bad example above), or even58

more general settings. The redeeming feature in these settings is that we are not searching59

blindly: the nodes of the graph come with estimates of their quality, which we can use to60

search effectively. What are good algorithms in such settings? What can we prove about61

them?62

In this paper we formalize these questions via the idea of distance predictions: each node63

v gives a prediction f(v) of its distance dG(v, g) to the goal state. If these predictions are all64

correct, we can just “walk downhill”—i.e., starting with v0 being the start node, we can move65

at each timestep t to a neighbor vt of vt−1 with f(vt) = f(vt−1)− 1. This reaches the goal66

along a shortest path. However, getting perfect predictions seems unreasonable, so we ask:67

What if a few of the predictions are incorrect? Can we achieve an “input-sensitive” or68

“smooth” or “robust” bound, where we incur a cost of d(g, r)+ some function of the69

prediction error?70

We consider two versions of the problem:71

The Exploration Problem. In this setting the graph G is initially unknown to the agent:72

it only knows the vertex v0 = r, its neighbors ∂v0, and the predictions on all these nodes.73

In general, at the beginning of time t ≥ 1, it knows the vertices Vt−1 = {v0, v1, · · · , vt−1}74

visited in the past, all their neighboring vertices ∂Vt−1, and the predictions for all the75

vertices in Vt−1 ∪ ∂Vt−1. The agent must use this information to move to some unvisited76

neighbor (which is now called vt), paying a cost of d(vt−1, vt). It then observes the edges77

incident to vt, along with the predictions for nodes newly observed.78

The Planning Problem. This is a simpler version of the problem where the agent starts79

off knowing the entire graph G, as well as the predictions at all its nodes. It just does80

not know which node is the goal, and hence it must traverse the graph in some order.81

The cost in both cases is the total distance traveled by the agent until it reaches the goal,82

and the competitive ratio is the ratio of this quantity to the shortest path distance d(r, g)83

from the root to the goal.84

1.1 Our Results85

Our first main result is for the (more challenging) exploration problem, for the case of trees.86

▶ Theorem 1 (Exploration). The (deterministic) TreeX algorithm solves the graph explora-87

tion problem on trees in the presence of predictions: on any (unweighted) tree with maximum88

S. Banerjee, V. Cohen-Addad, A. Gupta and Z. Li 52:3

degree ∆, for any constant δ > 0, the algorithm incurs a cost of89

d(r, g)(1 + δ) + O(∆ · |E|/δ),90

where E := {v ∈ V | f(v) ̸= d(v, g)} is the set of vertices that give erroneous predictions.91

One application of the above theorem is for the layered graph traversal problem (see §1.392

for a complete definition).93

▶ Corollary 2 (Robustness and Consistency for the Layered Graph Traversal problem.). There ex-94

ists an algorithm that achieves the following guarantees for the layered graph traversal problem95

in the presence of predictions: given an instance with maximum degree ∆ and width k, for any96

constant δ > 0, the algorithm incurs an expected cost of at most min(O(k2 log ∆) OPT, OPT +97

O(∆|E|)).98

The proof of the above corollary is immediate: Since the input is a tree (with some99

additional structure that we do not require) that is revealed online, we can use the algorithm100

from Theorem 1. Hence, given an instance I of layered graph traversal (with predictions),101

we can use the algorithm from Theorem 1 in combination with the [8], thereby being both102

consistent and robust: if the predictions are of high quality, then our algorithm ensures that103

the cost will be nearly optimal; otherwise if the predictions are useless, [8]’s algorithm gives104

an upper bound in the worst case.105

Moreover, we show that the guarantee obtained in Theorem 1 is the best possible, up to106

constants.107

▶ Theorem 3 (Exploration Lower Bound). Any algorithm (even randomized) for the graph108

exploration problem with predictions must incur a cost of at least max(d(r, g), Ω(∆ · |E|)).109

Proof. The lower bound of d(r, g) is immediate. For the second term, consider the setting110

where the root r has ∆ disjoint paths of length D leaving it, and the goal is guaranteed111

to be at one of the leaves. Suppose we are given the “null” prediction, where each vertex112

predicts f(v) = D + ℓ(v) (where ℓ(v) is the distance of the vertex from the root, which we113

henceforth refer to as the level of the vertex). The erroneous vertices are the D vertices114

along the r-g path. Since the predictions do not give any signal at all (they can be generated115

by the algorithm itself), this is a problem of guessing which of the leaves is the goal, and any116

algorithm, even randomized, must travel Ω(∆ ·D) = Ω(∆ · |E|) before reaching the goal. ◀117

Our next set of results are for the planning problem, where we know the graph and the118

predictions up-front, and must come up with a strategy with this global information.119

▶ Theorem 4 (Planning). For the planning version of the graph exploration problem, there is120

an algorithm that incurs cost at most121

(i) d(r, g) + O(∆ · |E|) if the graph is a tree, where ∆ is the maximal degree.122

(ii) d(r, g) + 2O(α) ·O(|E|2) where α is the doubling dimension of G.123

Again, E is the set of nodes with incorrect predictions.124

Note that result (i) is very similar to that of Theorem 1 (for the harder exploration125

problem): the differences are that we do not lose any constant in the distance d(r, g) term,126

and also that the algorithm used here (for the planning problem) is simpler. Moreover, the127

lower bound from Theorem 3 continues to hold in the planning setting, since the knowledge128

of the graph and the predictions does not help the algorithm; hence result (i) is tight.129

We do not yet know an analog of result (ii) for the exploration problem: extending130

Theorem 1 to general graphs, even those with bounded doubling metrics remains a tantalizing131

ITCS 2023

52:4 Graph Searching with Predictions

open problem. Moreover, we currently do not have a lower bound matching result (ii); indeed,132

we conjecture that a cost of d(r, g) + 2O(α) · |E| should be achievable. We leave these as133

questions for future investigation.134

1.2 Our Techniques135

To get some intuition for the problem, consider the case where given a tree and a guarantee136

that the goal is at distance D from the start node r. Suppose each node v gives the “null”137

prediction of f(v) = D + d(r, v). In case the tree is a complete binary tree, then these138

predictions carry no information and we would have to essentially explore all nodes within139

distance D. But note that the predictions for about half of these nodes are incorrect, so140

these erroneous nodes can pay for this exploration. But now consider a “lopsided” example,141

with a binary tree on one side of the root, and a path on the other (Figure 1). Suppose the142

goal is at distance D along the path. In this case, only the path nodes are incorrect, and we143

only have O(D + |E|) = O(D) budget for the exploration. In particular, we must explore144

more aggressively along the path, and balance the exploration on both sides of the root. But145

such gadgets can be anywhere in the tree, and the predictions can be far more devious than146

the null-prediction, so we need to generalize this idea.147

r

a

b

g

Figure 1 The subtree rooted on r’s child a is a complete binary tree, while the subtree rooted on b

is a path to the goal g. “Null” predictions f(v) = D + d(r, v) at every v have a total error D (only
nodes on the path from r to g have errors on predictions).

We start off with a special case which we call the known-distance case. This is almost148

the same as the general problem, but with the additional guarantee that the prediction of149

the root is correct. Equivalently, we are given the distance D := d(r, g) of the goal vertex150

from the root/starting node r. For this setting, we can get the following very sharp result:151

▶ Theorem 5 (Known-Distance Case). The TreeX-KnownDist algorithm solves the graph152

exploration problem in the known-distance case, incurring a cost of at most d(r, g) + O(∆|E|).153

Hence in the zero-error case, or in low-error cases where |E| ≪ D, the algorithm loses154

very little compared to the optimal-in-hindsight strategy, which just walks from the root to155

the goal vertex, and incurs a cost of D. This algorithm is inspired by the “lopsided” example156

above: it not only balances the exploration on different subtrees, but also at multiple levels.157

To generalize this idea from predictions, we introduce the concepts of anchor and loads (see158

§2). At a high level, for each node we consider the subtrees rooted at its children, and identify159

subset of nodes in each of these subtrees which are erroneous depending on which subtree160

contains the goal g. We ensure that these sets have near-equal sizes, so that no matter which161

of these subtrees contains the goal, one of them can pay for the others. This requires some162

delicacy, since we need to ensure this property throughout the tree. The details appear in §3.163

Having proved Theorem 5, we use the algorithm to then solve the problem where the164

prediction for the root vertex may itself be erroneous. Given Theorem 5 and Algorithm 1,165

S. Banerjee, V. Cohen-Addad, A. Gupta and Z. Li 52:5

we can reduced the problem to finding some node v such that d(v, g) is known; moreover166

this v must not be very far from the start node r. The idea is conceptually simple: as167

we explore the graph, if most predictions are correct we can use these predictions to find168

such a v, otherwise these incorrect predictions give us more budget to continue exploring.169

Implementing this idea (and particularly, doing this deterministically) requires us to figure170

out how to “triangulate” with errors, which we do in §4.171

Finally, we give the ideas behind the algorithms for the planning version of the problem.172

The main idea is to define the implied-error function φ(v) := |{u | f(u) ̸= d(u, v)}|, which173

measures the error if the goal is sitting at node v. Since we know all the predictions and the174

tree structure in this version of the problem, and moreover ϕ(g) = |E|, it is natural to search175

the graph greedily in increasing order of the implied-error. However, naively doing this may176

induce a large movement cost, so we bucket nodes with similar implied-error together, and177

then show that the total cost incurred in exploring all nodes with φ(v) ≈ 2i is itself close178

to 2i (times a factor that depends on the degree or the doubling dimension). It remains an179

interesting open problem to extend this algorithm to broader classes of graphs. The details180

here appear in §5.181

1.3 Related Work182

Graph Searching. Graph searching is a fundamental problem, and there are too many183

variants to comprehensively discuss: we point to the works closest to ours. Baeza-Yates,184

Culberson, and Rawlins [3] considered the exploration problem without predictions on the185

line (where it is also called the “cow-path” problem), on k-spiders (i.e., where k semi-infinite186

lines meet at the root) and in the plane: they showed tight bounds of 9 on the deterministic187

competitive ratio of the line, 1 + 2kk/(k − 1)k−1 for k-spiders, among other results. Their188

lower bounds (given for “monotone-increasing strategies”) were generalized by Jaillet and189

Stafford [23]; [24] point out that the results for k-spiders were obtained by Gal [18] before [3]190

(see also [1]). Kao et al. [29, 28] give tight bounds for both deterministic and randomized191

algorithms, even with multiple agents.192

The layered graph traversal problem [42] is very closely related to our model. A tree is193

revealed over time. At each timestep, some of the leaves of the current tree die, and others194

have some number of children. The agent is required to sit at one of the current (living)195

leaves, so if the node the agent previously sat is no longer a leaf or is dead, the agent is forced196

to move. The game ends when the goal state is revealed and objective is to minimize the197

total movement cost. The width k of the problem is the largest number of leaves alive at any198

time (observe that we do not parameterize our algorithm with this parameter). This problem199

is essentially the cow-path problem for the case of w = 2, but is substantially more difficult200

for larger widths. Indeed, the deterministic bounds lie between Ω(2k) [17] and O(k2k) [9].201

Ramesh [44] showed that the randomized version of this problem has a competitive ratio202

at least Ω(k2/(log k)1+ε) for any ε > 0; moreover, his O(k13)-competitive algorithm was203

improved to a nearly-tight bound of O(k2 log ∆) in recent exciting result by Bubeck, Coester,204

and Rabani [8].205

Kalyanasundaram and Pruhs [26] study the exploration problem (which they call the206

searching problem) in the geometric setting of k polygonal obstacles with bounded aspect ratio207

in the plane. Some of their results extend to the mapping problem, where they must determine208

the locations of all obstacles. Deng and Papadimitriou [12] study the mapping problem,209

where the goal is to traverse all edges of an unknown directed graph: they give an algorithm210

with cost 2|E| for Eulerian graphs (whereas OPT = |E|), and cost exp(O(d log d))|E| for211

graphs with imbalance at most d. Deng, Kameda, and Papadimitriou [11] give an algorithm212

ITCS 2023

52:6 Graph Searching with Predictions

to map two-dimensional rectilinear, polygonal environments with a bounded number of213

obstacles.214

Kalyanasundaram and Pruhs [27] consider a different version of the mapping problem,215

where the goal is to visit all vertices of an unknown graph using a tour of least cost. They216

give an algorithm that is O(1)-competitive on planar graphs. Megow et al. [37] extend their217

algorithm to graphs with bounded genus, and also show limitations of the algorithm from218

[27].219

Blum, Raghavan and Schieber [6] study the point-to-point navigation problem of finding220

a minimum-length path between two known locations s and t in a rectilinear environment;221

the obstacles are unknown axis-parallel rectangles. Their O(
√

n)-competitiveness is best222

possible given the lower bound in [42]. [30] give lower bounds for randomized algorithms in223

this setting.224

Our work is related in spirit to graph search algorithms like A∗-search which use score225

functions to choose the next leaf to explore. One line of work giving provably good algorithms226

is that of Goldberg and Harrelson [19] on computing shortest paths without exploring the227

entire graph. Another line of work related in spirit to ours is that of Karp, Saks, and228

Wigderson [31] on branch-and-bound (see also [32]).229

Noisy Binary Search. A very closely related line of work is that of computing under230

noisy queries [16]. In this widely-used model, the agent can query nodes: each node “points”231

to a neighbor that is closer to the goal, though some of these answers may be incorrect. Some232

of these works include [41, 40, 15, 10, 13, 7]. Apart from the difference in the information233

model (these works imagine knowing the entire graph) and the nature of hints (“gradient”234

information pointing to a better node, instead of information about the quality/score of the235

node), these works often assume the errors are independent, or adversarial with bounded236

noise rate. Most of these works allow random-access to nodes and seek to minimize the237

number of queries instead of the distance traveled, though an exception is the work of [7].238

As far as we can see, the connections between our models is only in spirit. Moreover, we239

show in §7.3 that results of the kind we prove are impossible if the predictions don’t give us240

distance information but instead just edge “gradients”.241

Algorithms with Predictions. Our work is related to the exciting line of research242

on algorithms with predictions, such as in ad-allocation [35], auction pricing [36], page243

migration [22], flow allocation [34], scheduling [43, 33, 39], frequency estimation [21], speed244

scaling [4], Bloom filters [38], bipartite matching and secretary problems [2, 14], and online245

linear optimization [5].246

2 Problem Setup and Definitions247

We consider an underlying graph G = (V, E) with a known root node r and an unknown248

goal node g. (For most of this paper, we consider the unweighted setting where all edge have249

unit length; §5.3 and §7.2 discuss cases where edge lengths are positive integers.) Each node250

has degree at most ∆. Let d(u, v) denote the distance between nodes u, v for any u, v ∈ V ,251

and let D := d(r, g) be the optimal distance from r to the goal node g.252

Let us formally define the problem setup. An agent initially starts at root r, and wants to253

visit goal g while traversing the minimum number of edges. In each timestep t ∈ {1, 2, . . .},254

the agent moves from some node vt−1 to node vt. We denote the visited vertices at the start255

of round t by Vt−1 (with V0 = {r}), and use ∂Vt−1 to denote the neighboring vertices—those256

not in Vt−1 but having at least one neighbor in Vt−1. Their union Vt−1 ∪ ∂Vt−1 is the set of257

observed vertices at the end of time t− 1. Each time t the agent visits a new node vt such258

S. Banerjee, V. Cohen-Addad, A. Gupta and Z. Li 52:7

Vt

∂Vt

Figure 2 The observed vertices Vt ∪ ∂Vt (and extended subtree T
t := T [Vt ∪ ∂Vt]) at some

intermediate stage of the algorithm. Visited nodes Vt are shown in red, and their un-visited neighbors
∂Vt in blue.

that Vt := Vt−1 ∪ {vt}, and it pays the movement cost d(vt−1, vt), where v0 = r. Finally,259

when vt = g and the agent has reached the goal, the algorithm stops. The identity of the260

goal vertex is known when—and only when—the agent visits it, and we let τ∗ denote this261

timestep. Our aim is to design an algorithm that reaches the goal state with minimum total262

movement cost:263

τ∗∑
t=1

dt−1(vt−1, vt).264

Within the above setting, we consider two problems:265

In the planning problem, the agent knows the graph G (though not the goal g), and in266

addition, is given a prediction f(v) ∈ Z for each v ∈ V of its distance to the goal g; it267

can then use this information to plan its search trajectory.268

In the exploration problem, the graph G and the predictions f(v) ∈ Z are initially269

unknown to the agent, and these are revealed only via exploration; in particular, upon270

visiting a node for the first time, the agent becomes aware of previously unobserved nodes271

in v’s neighborhood. Thus, at the end of timestep t, the agent knows the set of visited272

vertices Vt, neighboring vertices ∂Vt, and the predictions f(v) for each observed vertex273

v ∈ Vt ∪ ∂Vt.274

In both cases, we define E := {v ∈ V | f(v) ̸= d(g, v)} to be the set of erroneous nodes.275

Extending this notation, for the exploration problem, we define Et := E ∩ Vt as the erroneous276

nodes visited by time t.277

3 Exploring with a Known Target Distance278

Recall that our algorithm for the exploration problem on trees proceeds via the known-279

distance version of the problem: in addition to seeing the predictions at the various nodes as280

we explore the tree, we are promised that the distance from the starting node/root r to the281

goal state g is is exactly some value D, i.e., d(r, g) = D. The main result of this section is282

Theorem 5, and we restate a rigorous version here.283

▶ Theorem 6. If D = d(r, g), the algorithm TreeX-KnownDist(r, D, +∞) finds the goal284

node g incurring a cost of at most d(r, g) + O(∆|E|).285

Algorithm TreeX-KnownDist is stated in Algorithm 1. For better understanding of it,286

we first give some key definitions.287

ITCS 2023

52:8 Graph Searching with Predictions

3.1 Definitions: Anchors, Degeneracy, and Criticality288

For an unweighted tree T , we define the level of node v with respect to the root r to be289

ℓ(v) := d(r, v), and so level L denotes the set of nodes v such that d(r, v) = ℓ(v) = L.290

Since the tree is rooted, there are clearly defined notions of parent and child, ancestor and291

descendent. Each node is both an ancestor and a descendant of itself. For any node v, let292

Tv denote the subtree rooted at v. Extending this notation, we define the visited subtree293

T t := T [Vt], and the extended subtree T
t := T [Vt ∪ ∂Vt], and let T t

v and T
t

v be the subtrees294

of T t and T
t rooted at v.295

▶ Definition 7 (Active and Degenerate nodes). In the exploration setting, at the end of296

timestep t, a node v ∈ Vt ∪ ∂Vt is active if T t
v ̸= T

t

v, i.e., there are observed descendants of v297

(including itself) that have not been visited.298

An active node v ∈ Vt ∪ ∂Vt is degenerate at the end of timestep t if it has a unique child299

node in T
t that is active.300

In other words, all nodes which have un-visited descendants (including those in the301

frontier ∂Vt) are active. Active nodes are further partitioned into degenerate nodes that have302

exactly one child subtree that has not been fully visited, and active nodes that have at least303

two active children. See Figure 3 for an illustration.304

A crucial definition for our algorithms is that of anchor nodes:305

▶ Definition 8 (Anchor). For node u ∈ T , define its anchor τ(u) to be its ancestor in level306

α(u) := 1
2 (D + ℓ(u)− f(u)). If the value α(u) is negative, or is not an integer, or node u307

itself belongs at level smaller than α(u), we say that u has no anchor and that τ(u) = ⊥.308

Figure 3 demonstrates the location of an anchor node τ(u) for given node u; it also illustrates309

the following claim, which forms the main rationale behind the definition:310

▷ Claim 9. If the prediction for some node u is correct, then its anchor τ(u) is the least311

common ancestor (in terms of level ℓ) of u and the goal g. Consequently, if a node u has no312

anchor, or if its anchor does not lie on the path P ∗ from r to g, then u ∈ E .313

For any node v ∈ T , define its children be χi(v) for i = 1, 2, . . . , ∆v, where ∆v ≤ ∆314

is the number of children for v. Note that the order is arbitrary but prescribed and fixed315

throughout the algorithm. For any time t, node v, and i ∈ [∆v], define the visited portion of316

the subtree rooted at the ith child as Ct
i (v) := T t

χi(v).317

▶ Definition 10 (Loads σi and σ). For any time t, node v, and index i ∈ [∆v], define318

σt
i(v) := |{u ∈ Ct

i (v) | τ(u) = v}|.319

In other words, σt
i(v) is the number of nodes in Ct

i (v) that have v as their anchor. Define320

σt(v) =
∑∆v

i=1 σt
i(v) to be the total number of nodes in T t

v \ {v} which have v as their anchor.321

▶ Definition 11 (Critical Node). For any time t, active and non-degenerate node v, and322

index j ∈ [∆v], let qj := arg mini ̸=j{σt
i(v) | χi(v) is active at time t}. Call v a critical node323

with respect to j at time t if it satisfies324

(i) σt
j(v) ≥ 2σt

qj
(v), namely, the number of nodes of Ct

j(v) that have v as their anchor is at325

least twice larger than the number of nodes of Ct
qj

(v) that have v as their anchor; and326

(ii) 2σt
j(v) ≥ |Ct

j(v)|, namely, at least half of the nodes of Ct
j(v) have v as their anchor.327

S. Banerjee, V. Cohen-Addad, A. Gupta and Z. Li 52:9

f(u)

ℓ(u)

D

r u

g

τ(u)

ℓ(u)

D+ℓ(u)−f(u)
2

r u

τ(u)

r

Active and degenerate nodes Anchor node Illustrating Claim 9

c

b

d a

Figure 3 The first figure from the left illustrates active and degenerate nodes. Nodes such as
a (shaded in blue) are in ∂Vt while the rest are visited nodes in Vt. Unshaded node b is inactive
(since it has no un-visited descendant), while all other shaded nodes (blue, yellow and red) are active.
Among the active nodes, nodes such as c (shaded in yellow) are non-degenerate nodes as they have at
least two active children. Finally nodes such as d (shaded in red) are degenerate as they have exactly
one active child.
The second and third figures give an example of anchor node τ(u) (in yellow) at level 1

2 (D+ℓ(u)−f(u))
for given node u (in red) at level ℓ(u). The rightmost figure (with root r and goal g also indicated)
illustrates Claim 9, showing that when u’s prediction f(u) is correct, then its anchor is the least
common ancestor of u and goal g (since D + ℓ(u) − f(u) is equal to twice the distance of τ(u) from
r).

3.2 The TreeX-KnownDist Algorithm328

Equipped with the definitions in §3.1, at a high level, the main idea of the algorithm is329

to balance the loads (as defined in Definition 10) of all the nodes v. Note that if the goal330

g ∈ Ci(v), then the nodes u ∈ Ci(v) that have v as their anchor (i.e., τ(u) = v) have331

erroneous predictions; hence balancing the loads automatically balances the cost and the332

budget. To balance the loads, we use the definition of a critical node (see Definition 11):333

whenever a node v becomes critical, the algorithm goes back and explores another subtree of334

v, thereby maintaining the balance.335

More precisely, our algorithm TreeX-KnownDist does the following: at each time step336

t, it checks whether there is a node that is critical. If there is no such node, the algorithm337

performs one more step of the current DFS, giving priority to the unexplored child of vt338

with smallest prediction. On the other hand, if there is a critical node v, then this v must be339

the anchor τ(vt). In this case the algorithm pauses the current DFS, returns to the anchor340

τ(vt) and resumes the DFS in τ(vt)’s child subtree having the smallest load (say Cq(τ(vt))).341

This DFS may have been paused at some time t′ < t, and hence is continued starting at342

node vt′ . The variable mem(v) saves the vertex that the algorithm left the subtree rooted on343

v last time. For example, in this case mem(χq(τ(vt))) = vt′ . If no such time t′ exists, the344

algorithm starts a new DFS from some child of τ(vt) whose subtree has the smallest load (in345

this case, mem(χq(τ(vt))) = ⊥). The pseudocode appears as Algorithm 1.346

A few observations: (a) While D = d(r, g) does not appear explicitly in the algorithm, it347

is used in the definition of anchors (recall Definition 8). Even when d(r, g), the predicted348

distance at the root, is not the true distance to the goal (as may happen in Section 4),349

given any input D in Algorithm 1, we will still define τ(v) to be v’s ancestor at level350

α(u) := 1
2 (D + ℓ(u)− f(u)). (b) The new node vt is always on the frontier : i.e., the nodes351

which are either leaves of T or have unvisited children. Moreover, (c) the memory value352

mem(v) = ⊥ if and only if v ̸∈ Vt, else mem(v) is on the frontier in the subtree below v.353

ITCS 2023

52:10 Graph Searching with Predictions

Algorithm 1 TreeX-KnownDist(r, D, B)

1.1 v0 ← r, t← 0
1.2 mem(r)← r and mem(v)← ⊥ for all v ̸= r

1.3 while vt ̸= g and |Vt| < B do
1.4 if τ(vt) ̸= ⊥ and τ(vt) is active and not degenerate and τ(vt) is critical w.r.t. the

index of the subtree containing vt at time t then
1.5 q ← the child index q s.t. τ(vt) is critical w.r.t. q

1.6 if mem(χq(τ(vt))) = ⊥ then vt+1 ← χq(τ(vt) else u← mem(χq(τ(vt))
1.7 else
1.8 u← vt

1.9 while vt+1 undefined and u has no child do
1.10 w ← u’s closest active ancestor
1.11 q ← arg mini{σt

i(w) | χi(w) active }
1.12 if mem(χq(w)) = ⊥ then vt+1 ← χq(w) else u← mem(χq(w))
1.13 if vt+1 undefined then vt+1 ← u’s child with smallest prediction
1.14 foreach ancestor u of vt+1 do mem(u)← vt+1
1.15 t← t + 1

3.3 Analysis for the TreeX-KnownDist Algorithm354

The proof of Theorem 6 proceeds in two steps. The first step is to show that the total amount355

of “extra” exploration, i.e., the number of nodes that do not lie on the r-g path, is O(∆ · |E|).356

Formally, let P ∗ denote the r-g path; for the rest of this section, suppose g ∈ C1(v) for357

all v ∈ P ∗. Define the extra exploration to be the number of nodes visited in the subtrees358

hanging off this path:359

ExtraExp(t) :=
∑

v∈P ∗

∑
i ̸=1
|Ct

i (v)|.360

▶ Lemma 12 (Bounded Extra Exploration). For all times t∗, ExtraExp(t∗) ≤ 7∆ · |Et∗ |.361

Next, we need to control the total distance traveled, which is the second step of our362

analysis:363

▶ Lemma 13 (Bounded Cost). For all times t∗,364 ∑
t≤t∗

d(vt−1, vt) ≤ d(r, vt∗) + 10 ExtraExp(t∗) + 16|Et∗
|.365

Using the lemmas above (setting t∗ to be the time τ∗ when we reach the goal) proves366

Theorem 5. In the following sections, we now prove Lemmas 12 and 13.367

3.4 Bounding the Extra Exploration368

▶ Lemma 14. For any node v ∈ T t, define xt(v) as follows:369

(i) if g /∈ Tv, then xt(v) := σt(v).370

(ii) if g ∈ Tv \ {v}, let g ∈ Tχj(v). Define yt
1(v) := σt

j(v), yt
2(v) :=

∑
i ̸=j(|Ct

i (v)| − σt
i(v))371

and xt(v) := yt
1(v) + yt

2(v).372

Then
∑

v∈T t xt(v) ≤ 2|Et|.373

S. Banerjee, V. Cohen-Addad, A. Gupta and Z. Li 52:11

Proof. Let P ∗ be the r-g path in T . If g /∈ Tv (i.e., v /∈ P ∗), then by Claim 9 all the nodes374

with v as anchor belong to E . Else suppose g ∈ Tv (i.e., v ∈ P ∗), and suppose g ∈ Tχj(v).375

Now all nodes u in Cj(v) having anchor v belong to E , since the least common ancestor of u376

and g can be no higher than χj(v). This means377 ∑
v∈T t\P ∗

xt(v) +
∑

v∈P ∗

yt
1(v) ≤

∑
v∈T t

|{u ∈ E | τ(u) = v}| ≤ |Et|.378

Finally, suppose g ∈ Tv (i.e., v ∈ P ∗) and g ∈ Tχj(v). Now for any node u ∈ Tχi(v) for i ̸= j,379

the least common ancestor of u and g is v. Hence nodes in Tχi(v) for i ̸= j whose anchor380

is not v must be wrongly predicted. Denote the set of such nodes by Y t
2 (v). Note that381

|Y t
2 (v)| = yt

2(v), and Y t
2 (v) for each v ∈ P ∗ are disjoint. Hence we have382 ∑

v∈P ∗

yt
2(v) ≤

∑
v∈P ∗

|Y t
2 (v)| ≤ |Et|.383

Summing the two inequalities we get the proof. ◀384

▶ Lemma 15. For any node v ∈ T and any index i ∈ {1, 2, . . . , ∆v} such that σt
i(v) >385

minq{σt
q(v) | χq(v) is active at time t}. If vt ∈ Tχj(v) for some j ̸= i then vt+1 /∈ Tχi(v).386

Proof. The proof is by contradiction. Assume there is such a time t, and let w :=387

arg minq{σt
q(v) | χq(v) is active at time t}. Since vt+1 ∈ Tχi(v), the subtree under node388

χi(v) was not fully visited at time r and hence χi(v) was active. By the definition of w and389

the condition on i in the lemma statement, we have σt
i(v) > σt

w(v). Now Algorithm 1 will390

ensure that vt+1 either remains in Tχj(v) or moves into Tχw(v). ◀391

▶ Lemma 16. For any node v on the r-g path P ∗, recall the assumption that g ∈ C1(v). For392

any time t and any i ̸= 1, at least one of the following statements must hold:393

(i) σt
i(v) ≤ 2σt

1(v).394

(ii) 2σt
i(v) ≤ |Ct

i (v)|.395

(iii) σt
i(v) = |Ct

i (v)| = 1, σt
1(v) = 0.396

Proof. For sake of a contradiction, assume there exists t, i such that at time t none of the397

three statements are true, and this is the first such time. If |Ct
i (v)| = 1, then the falsity of398

second statement gives σt
i(v) > 1/2 |Ct

i (v)| = 1/2, and so σt
i(v) = 1. Then the first statement399

being false implies σt
1(v) < 1/2, which means the third statement must hold.400

Henceforth let us assume |Ct
i (v)| ≥ 2. Let t′ < t be the latest time such vt′ ∈ Ci(v) and401

τ(vt′) = v. Because the second statement is false, σt
i(v) > 1/2 |Ct

i (v)| ≥ 1, and so such a time402

t′ exists.403

Since t′ is the latest time satisfying the condition, we have σt
i(v) ≤ σt′

i (v) + 1. Moreover,404

the number of nodes in Ct
i (v) whose anchor is not v does not decrease, hence |Ct

i (v)|−σt
i(v) ≥405

|Ct′

i (v)| − σt′

i (v). Also, the number of nodes in Ct
1(v) whose anchor is v does not decrease,406

hence σt
1(v) ≥ σt′

1 (v).407

Thus we can get408

σt′

i (v)− 2σt′

1 (v) ≥ σt
i(v)− 2σt

1(v)− 1 ≥ 0

2σt′

i (v)− |Ct′

i (v)| ≥ 2σt
i(v)− |Ct

i (v)| − 1 ≥ 0
(1)409

Now if Ct′

i (v) is completely visited, then obviously vt′+1 /∈ Ci(v). Otherwise, Ct′

i (v)410

is active. Also because g ∈ C1(v), hence C1(v) cannot be completely visited unless the411

ITCS 2023

52:12 Graph Searching with Predictions

algorithm ends, which means v is not degenerate and Ct′

1 (v) is still active. Furthermore,412

we have inequalities (1), hence v must be critical w.r.t. the subtree containing vt′ (because413

taking q = 1 we get the two inequalities for critical hold, although σt′

1 (v) may not be the414

smallest one). Hence at time t′ + 1 the algorithm will go to a node which is not in Ci(v).415

If vt /∈ Ct
i (v): Note that one of the three statements holds for t′. If one of the first two416

statements is true to t′, then the same statement is also true to t because σt
i(v) = σt′

i (v),417

|Ct
i (v)| = |Ct′

i (v)| and σt
1(v) ≥ σt′

1 (v). Otherwise we have σt
i(v) = σt′

i (v) = |Ct
i (v)| =418

|Ct′

i (v)| = 1. Then if σt
1(v) = 0, then the third statement is true to t; if σt

1(v) ≥ 1, then the419

first statement is true to t.420

Otherwise vt ∈ Ct
i (v): By Lemma 15, there must exist a time t > t′′ > t′ such that421

σt′′

1 (v) ≥ σt′′

i (v) (otherwise the algorithm will never enter Ci(v) since C1(v) is always active).422

Hence by the analysis before, we have σt′′

1 (v) ≥ σt′

i (v) ≥ 1. Because t′ is defined as the423

latest time before t when vt ∈ Ci(v), we have σt′′

i (v) = σt′

i (v). Hence σt
i(v) ≤ σt′

i (v) + 1 ≤424

2σt′′

i (v) ≤ 2σt′′

1 (v) ≤ 2σt
1(v), which is the first statement in this lemma. ◀425

▶ Lemma 17. For any node v on the r-g path P ∗, and any time t,426

(i) if f(χi(v)) = d(χi(v), g) for all i ∈ [∆v] then
∑

i ̸=1 |Ct
i (v)| ≤ 3∆xt(v),427

(ii) else
∑

i ̸=1 |Ct
i (v)| ≤ 3∆xt(v) + ∆.428

Proof. For the first case: if f(χi(v)) = d(χi(v), g) for all i, then f(χ1(v)) is the smallest label429

among all f(χi(v)) since the predictions are all correct. Hence by the algorithm, the first430

node reached among {χi(v)} must be χ1(v), which means the third statement in Lemma 16431

cannot hold. By Lemma 16, for any i, t, σt
i(v) ≤ 2σt

1(v) or 2σt
i(v) ≤ |Ct

i (v)|.432

If σt
i(v) ≤ 2σt

1(v): |Ct
i (v)| − σt

i(v) + σt
1(v) ≥ σt

1(v) ≥ σt
i(v)/2; If 2σt

i(v) ≤ |Ct
i (v)|:433

|Ct
i (v)| − σt

i(v) + σt
1(v) ≥ |Ct

i (v)| − σt
i(v) ≥ σt

i(v). Either of them can lead to a conclusion434

that435

|Ct
i (v)| − σt

i(v) + σt
1(v) ≥ σt

i(v)/2.436

Denote xt
i(v) := |Ct

i (v)| − σt
i(v) + σt

1(v). Then by σt
1(v) ≥ 0 and the inequality above, we437

have |Ct
i (v)| ≤ xt

i(v) + σt
i(v) ≤ 3xt

i(v).438

Hence
∑

i ̸=1 |Ct
i (v)| ≤ 3

∑
i̸=1 xt

i(v) = 3
∑

i ̸=1(|Ct
i (v)|−σt

i(v)+(∆−1)σt
1(v)) ≤ 3∆(σt

1(v)+439 ∑
i̸=1 |Ct

i (v)| − σt
i(v)) = 3∆xt(v). Here the last equality is because of Lemma 14.440

Second, consider other cases. By Lemma 16, σt
i(v) ≤ 2σt

1(v) + 1 or 2σt
i(v) ≤ |Ct

i (v)|+ 1.441

If σt
i(v) ≤ 2σt

1(v) + 1: |Ct
i (v)| − σt

i(v) + σt
1(v) + 1/2 ≥ σt

1(v) + 1/2 ≥ σt
i(v)/2; If 2σt

i(v) ≤442

|Ct
i (v)|+ 1: |Ct

i (v)| − σt
i(v) + σt

1(v) + 1/2 ≥ |Ct
i (v)| − σt

i(v) + 1/2 ≥ σt
i(v). Either of them can443

lead to a conclusion that444

|Ct
i (v)| − σt

i(v) + σt
1(v) + 1/2 ≥ σt

i(v)/2.445

Denote xt
i(v) := |Ct

i (v)| − σt
i(v) + σt

1(v), then |Ct
i (v)| ≤ xt

i(v) + σt
i(v) ≤ 3xt

i(v) + 1.446

Consequently
∑

i̸=1 |Ct
i (v)| ≤

∑
i ̸=i(3xt

i(v) + 1) = 3∆xt(v) + ∆, where the last equality447

is because of Lemma 14. ◀448

We can finally bound the extra exploration.449

Proof of Lemma 12. Divide the set of nodes on P ∗ into two sets A, B: A contains the nodes450

S. Banerjee, V. Cohen-Addad, A. Gupta and Z. Li 52:13

all of whose children are correctly labeled, and B contains the other nodes. Then451

ExtraExp(t∗) =
∑
v∈A

∑
i ̸=1
|Ct∗

i (v)|+
∑
v∈B

∑
i̸=1
|Ct∗

i (v)| (2)452

(⋆)
≤

∑
v∈A

3∆xt∗
(v) +

∑
v∈B

(3∆xt∗
(v) + ∆) (3)453

= 3∆
∑

v∈P ∗

xt∗
(v) + ∆|B|

(⋆⋆)
≤ 6∆|Et∗

|+ ∆|Et∗
| = 7∆|Et∗

|. (4)454

455

The inequality (⋆) uses Lemma 17, and (⋆⋆) uses Lemma 14. This proves Lemma 12. ◀456

3.5 Bounding the Movement Cost457

In this subsection, we bound the total movement cost (and not just the number of visited458

nodes), thereby proving Lemma 13.459

First, we partition the edge traversals made by the algorithm into downwards (from a460

parent to a child) and upwards (from a child to its parent) traversals, and denote the cost461

incurred by the downwards and upwards traversals until time t by M t
d and M t

u respectively.462

We start at the root and hence get M t
d = M t

u + d(r, vt); since we care about the time t∗ when463

we reach the goal state g, we have464

M t∗
= M t∗

u + M t∗

d = 2M t∗

u + d(r, vt). (5)465

It now suffices to bound the upwards movement M t∗

u . For any edge (u, v) with v being the466

parent and u the child, we further partition the upwards traversals along this edge into two467

types:468

(i) upward traversals when the if statement is true at time t for a node vs (which lies at or469

below u) and we move the traversal to another subtree of τ(vs) (which lies at or above470

v), and471

(ii) the unique upward traversal when we have completely visited the subtree under the472

edge.473

The second type of traversal happens only once, and it never happens for the edges on474

the r-g path P ∗ (since those edges contain the goal state under it, which is not visited until475

the very end). Hence the second type of traversals can be charged to the extra exploration476

ExtraExp(t∗). It remains to now bound the first type of upwards traversals, which we refer477

to as callback traversals.478

We further partition the callback traversals based on the identity of the anchor which479

was critical at that timestep: let M t
u(v) denote the callback traversal cost at those times s480

when v = τ(vs). Hence the total cost of callback traversals is
∑

v∈T t∗ M t∗

u (v), and481

M t∗
= d(r, vt) + 2

(
ExtraExp(t∗) +

∑
v∈T t∗

M t∗

u (v)
)

. (6)482

483

We now control each term of the latter sum.484

▶ Lemma 18. For any time t and any node v ∈ T t, M t
u(v) ≤ 4σt(v).485

Proof. For node v and index j, let S be the set of times s ≤ t for which vs ∈ Cs
j (v) and the486

if condition is satisfied with τ(vs) = v (i.e, τ(vs) = v, v is active and not degenerate and v is487

ITCS 2023

52:14 Graph Searching with Predictions

critical w.r.t. the subtree containing vs at time s). The cost of the upwards movement at488

this time is d(vs, v) ≤ |Cs
j (v)| ≤ 2σti

j (v); the latter inequality is true by criticality.489

Lemma 15 ensures that we only enter Cj(v) from a node outside it at some time s when490

j ∈ arg minq{σs
q(v)}. Hence, if S = {t1, . . . , tm} then for each i there must exist a time si491

satisfying ti < si < ti+1 such that minq{σsi
q (v)} = σsi

j (v). Consequently,492

σ
ti+1
j ≥ 2 min

q
{σti+1

q (v)} ≥ 2 min
q
{σsi

q (v)} = 2σsi
j (v) ≥ 2σti

j (v).493

Hence, for each ti ∈ S,494

m∑
i=1

d(vti
, v) ≤

m∑
i=1

2σti
j (v) ≤ 4σtm

j (v) ≤ 4σt
j(v). (7)495

496

This is the contribution due to a single subtree Tχj(v); summing over all subtrees gives a497

bound of 4σt(v), as claimed. ◀498

Proof of Lemma 13. The equation (6) bounds the total movement cost M t∗ until time t∗
499

in terms of D, the extra exploration, and the “callback” (upwards) traversals
∑

v M t∗

u (v).500

Lemma 18 above bounds each term M t∗

u (v) by 4σt∗(v). To bound this last summation,501

For each v ̸∈ P ∗, σt∗(v) = xt∗(v) by Lemma 14.502

For each v ∈ P ∗, recall our assumption that g ∈ C1(v), so503 ∑
v∈P ∗

σt∗
(v) =

∑
v∈P ∗

(
σt∗

1 (v) +
∑
i̸=1

σt∗

i (v)
)

504

≤
∑

v∈P ∗

xt∗
(v) +

∑
v∈P ∗

∑
i̸=1
|Ct∗

i (v)| =
∑

v∈P ∗

xt∗
(v) + ExtraExp(t∗),505

506

where σt∗

1 (v) ≤ xt∗(v) is directly given by definition in Lemma 14.507

Summing over all v (using Lemma 14), and substituting into (6) gives the claim. ◀508

4 The General Tree Exploration Algorithm509

We now build on the ideas from known-distance case to give our algorithm for the case where510

the true target distance d(g, r) is not known in advance, and we have to work merely with511

the predictions. Recall the guarantee we want to prove:512

▶ Theorem 1 (Exploration). The (deterministic) TreeX algorithm solves the graph explora-513

tion problem on trees in the presence of predictions: on any (unweighted) tree with maximum514

degree ∆, for any constant δ > 0, the algorithm incurs a cost of515

d(r, g)(1 + δ) + O(∆ · |E|/δ),516

where E := {v ∈ V | f(v) ̸= d(v, g)} is the set of vertices that give erroneous predictions.517

Note that Algorithm TreeX-KnownDist requires knowing D exactly in computing518

anchors; an approximation to D does not suffice. Because of this, a simple black-box use519

of Algorithm TreeX-KnownDist using a “guess-and-double” strategy does not seem to520

work. The main idea behind our algorithm is clean: we explore increasing portions of the521

tree. If most of the predictions we see have been correct, we show how to find a node whose522

prediction must be correct. Now running Algorithm 1 rooted at this node can solve the523

problem. On the other hand, if most of predictions that we have seen are incorrect, this524

gives us enough budget to explore further.525

S. Banerjee, V. Cohen-Addad, A. Gupta and Z. Li 52:15

4.1 Definitions526

▶ Definition 19 (Subtree Γ(u, v)). Given a tree T , node v and its neighbor u, let Γ(u, v)527

denote the set of nodes w such that the path from w to v contains u.528

▶ Lemma 20 (Tree Separator). Given a tree T with maximum degree ∆ and |T | = n > 2∆529

nodes, there exists a node v and two neighbors a, b such that |Γ(a, v)| > |T |
2∆ and |Γ(b, v)| > |T |

2∆ .530

Moreover, such v, a, b can be found in linear time.531

Proof. Let v be a centroid of tree T , i.e., a vertex such that deleting v from T breaks it532

into a forest containing subtrees of size at most n/2 [25]. Each such subtree corresponds533

to some neighbor of v. Let a, b be the neighbors corresponding to the two largest subtrees.534

Then |Γ(a, v)| ≥ n−1
∆ > n

2∆ . Moreover the second largest subtree may contain n−|Γ(a,v)|−1
∆−1 ≥535

n/2−1
∆−1 > n

2∆ when ∆ < n/2. ◀536

▶ Definition 21 (Vote γ(u, c) and Dominating vote γ(S, c)). Given a center c, let the vote of537

any node u ∈ T be γ(u, c) := f(u)− d(u, c). For any set of nodes S, define the dominating538

vote to be γ(S, c) := x if γ(u, c) = x for at least half of the nodes u ∈ S. If such majority539

value x does not exist, define γ(S, c) := −1.540

4.2 The TreeX Algorithm541

Given these definitions, we can now give the algorithm. Recall that Theorem 6 says that542

Algorithm 1 finds g in d(rρ, g) + c1∆ · |E| steps, for some constant c1 ≥ 1. We proceed in543

rounds: in round ρ we run Algorithm 1 and visit approximately ∆ · (c1 + β)ρ vertices, where544

β ≥ 1 is a parameter to be chosen later. Now we focus on two disjoint and “centrally located”545

subtrees of size ≈ (c1 + β)ρ within the visited nodes. Either the majority of these nodes have546

correct predictions, in which case we use their information to identify one correct node. Else547

a majority of them are incorrect, in which case we have enough budget to go on to the next548

round. A formal description appears in Algorithm 2.549

Algorithm 2 TreeX(r, β)

2.1 r0 ← r, D0 ← f(v), ρ← 0
2.2 while goal g not found do
2.3 Bρ ← (c1 + β)ρ · (2∆ + 1)
2.4 if Bρ < Dρ/β then
2.5 run TreeX-KnownDist(rρ, Dρ, Bρ)
2.6 else
2.7 run TreeX-KnownDist(rρ, Dρ, Dρ + c1Bρ)
2.8 T ρ+1 ← tree induced by nodes that have ever been visited so far
2.9 rρ+1, aρ+1, bρ+1 ← centroid for T ρ and its two neighbors promised by Lemma 20

2.10 let Da,ρ+1 ← γ(Γ(aρ+1, rρ+1), rρ+1) and Db,ρ+1 ← γ(Γ(bρ+1, rρ+1), rρ+1)
2.11 define new distance estimate Dρ+1 ← max{Da,ρ+1, Db,ρ+1}
2.12 move to vertex rρ+1
2.13 ρ← ρ + 1

ITCS 2023

52:16 Graph Searching with Predictions

4.3 Analysis of the TreeX Algorithm550

▶ Lemma 22. If the goal is not visited before round ρ when Bρ ≥ 4|E|(2∆ + 1), we have551

Dρ = d(rρ, g).552

Proof. First, if |E| = 0, then the conclusion holds obviously. So next we assume |E| > 0.553

The execution of Algorithm 1 in round ρ− 1 visits at least Bρ−1 = (c1 + β)(ρ−1) · (2∆ + 1)554

distinct nodes. Using the assumption on Bρ, we have555

|T ρ| ≥ 4|E| · (2∆ + 1) > 4∆|E| > 2∆.556

Lemma 20 now implies that both the subtrees Γ(aρ, rρ) and Γ(bρ, rρ) contain more than557

1
2∆ |T

ρ| > 2|E| nodes. Since at most |E| nodes are erroneous, more than half of the nodes in558

each of Γ(aρ, rρ) and Γ(bρ, rρ) have correct predictions.559

Finally, observe that if g ̸∈ Γ(aρ, rρ), then for any correct node x in Γ(aρ, rρ) we have560

f(x) = d(x, g) = d(x, rρ) + d(rρ, g), and hence its vote γ(x, rρ) = d(rρ, g). Since a majority561

of nodes in Γ(aρ, rρ) are correct, we get562

Da,ρ = γ(Γ(aρ, rρ), rρ) = d(rρ, g). (8)563
564

On the other hand, if g ∈ Γ(aρ, rρ), then for any correct node x in Γ(aρ, rρ) we have565

f(x) = d(x, g) ≤ d(x, aρ) + d(aρ, g) < d(x, rρ) + d(rρ, g). Thus its vote, and hence the vote566

of a strict majority of nodes in the subtree Γ(aρ, rρ) have567

Da,ρ < d(rρ, g). (9)568
569

If no value is in a strict majority, recall that we define Da,ρ = −1, which also satisfies (9).570

The same arguments hold for the subtree Γ(bρ, rρ) as well. Since the goal g belongs to at571

most one of these subtrees, we have that Dρ = max(Da,ρ, Db,ρ) = d(rρ, g), as claimed. ◀572

▶ Lemma 23. For any round ρ, d(rρ, r) ≤ O(Bρ). Moreover, for any round ρ such that573

Bρ ≥ 4|E|(2∆ + 1), d(rρ, r) ≤ O(Bρ−1) + O(β|E|∆).574

Proof. Since rρ is at distance at most (c1 + c3)Bρ−1 = Bρ from rρ−1, an inductive argument575

shows that its distance from r0 = r is at most (B0 + · · ·+ Bρ) = O(Bρ).576

Moreover, when Bρ ≥ 4|E|(2∆ + 1), we have d(rρ, g) = Dρ by Lemma 22. Hence if577

Bρ ≥ Dρ/β, the algorithm finds the goal in this round by Theorem 6. Therefore, for any578

rounds ρ when Bρ ≥ 4|E|(2∆ + 1) except the last round, the number of nodes visited by579

Algorithm 1 is at most Bρ, hence we have d(rρ+1, r) ≤ d(rρ, r) + Bρ. We denote ρ′ to be the580

first round ρ′ such that Bρ′ ≥ 4|E|(2∆ + 1). Thus by induction we have581

d(rρ, r) ≤
ρ−1∑
i=ρ′

Bi + d(rρ′ , r) ≤ O(Bρ−1) + O(Bρ′) ≤ O(Bρ−1) + O(β|E|∆). ◀582

Proof of Theorem 1. Firstly, for the rounds ρ when Bρ < 4|E|(2∆ + 1): in each round,583

Algorithm 1 at most visits (c1 + β)Bρ = Bρ+1 nodes, the cost incurred is at most 19Bρ+1,584

by Lemma 13. Moreover, the distance from the ending node to rρ+1 is a further O(Bρ+1) by585

Lemma 23. Therefore, since the bounds Bρ increase geometrically, the cost summed over all586

rounds until round ρ is O(Bρ+1) = O(β|E|∆).587

Secondly, for any rounds ρ when Bρ ≥ 4|E|(2∆ + 1) except the last round, by Lemma 22588

and Theorem 6, the number of nodes visited by Algorithm 1 is at most Bρ (the reasoning589

is the same as that in Lemma 23). Hence the cost incurred is at most 19Bρ. Moreover, by590

S. Banerjee, V. Cohen-Addad, A. Gupta and Z. Li 52:17

Lemma 23 the distance from the ending node to rρ+1 is at most O(Bρ) + O(β∆|E|), which591

means the total cost in round ρ is at most O(Bρ) + O(β∆|E|).592

Moreover, if we denote round ρ′ to be the first round such that Bρ′ ≥ 4|E|(2∆ + 1), then593

we have, for any round ρ > ρ′, Bρ > β∆|E|. Hence the cost in round ρ is O(Bρ).594

Finally, consider the last round ρ∗. We only need to consider the case when Bρ∗ ≥595

4|E|(2∆ + 1), otherwise the cost has been included in the first case. By Theorem 6, the cost596

incurred in this round is at most Dρ∗ + c1∆|E| ≤ d(r, g) + d(rρ∗ , r) + c1∆|E|. So summing597

the bounds above, the total cost is at most598

O(β∆|E|) + O(Bρ′) + O(β∆|E|) +
ρ∗−1∑

i=ρ′+1
O(Bi) + d(r, g) + d(rρ∗ , r) + c1∆|E|599

≤ d(r, g) + O(Bρ∗−1) + O(β∆|E|) ≤ d(r, g) + O(d(r, g)/β) + O(β∆|E|)600
601

Here the final inequality uses that602

Bρ∗−1 ≤ Dρ∗−1/β ≤ (d(r, g) + O(βBρ∗−1))/β ≤ (d(r, g) + O(Bρ∗−1))/β.603

Setting β = O(1/δ) gives the proof. ◀604

5 The Planning Problem605

In this section we consider the planning version of the problem when the entire graph G (with606

unit edge lengths, except for §5.3), the starting node r, and the entire prediction function607

f : V → Z are given up-front. The agent can use this information to plan its exploration608

of the graph. We propose an algorithm for this version and then prove the cost bound for609

trees, and then for a graph with bounded doubling dimension. We begin by defining the610

implied-error function φ(v), which gives the total error if the goal is at node v.611

▶ Definition 24 (Implied-error). The implied-error function φ : V → Z maps each node612

v ∈ V to φ(v) := |{u ∈ V | d(u, v) ̸= f(u)}|, which is the ℓ0 error if the goal were at v.613

The search algorithm for this planning version is particularly simple: we visit the nodes in614

rounds, where round ρ visits nodes with implied-error φ value at most ≈ 2ρ in the cheapest615

possible way. The challenge is to show that the total cost incurred until reaching the goal is616

small. Observe that |E| = φ(g), so if this value is at most 2ρ, we terminate in round ρ.617

Algorithm 3 FullInfoX

3.1 ρ← 0, S−1 ← ∅, r−1 ← r

3.2 while g not found do
3.3 Sρ ← {v ∈ T | φ(v) < 2ρ} \ (∪ρ−1

i=−1Si)
3.4 if Sρ ̸= ∅ then
3.5 Cρ ← min-length Steiner Tree on Sρ

3.6 go to an arbitrary node rρ in Sρ

3.7 visit all nodes in Cρ using an Euler tour of cost at most 2|Cρ|, and return to rρ

3.8 else
3.9 rρ ← rρ−1

3.10 ρ← ρ + 1

ITCS 2023

52:18 Graph Searching with Predictions

5.1 Analysis618

Recall our main claim for the planning algorithm:619

▶ Theorem 4 (Planning). For the planning version of the graph exploration problem, there is620

an algorithm that incurs cost at most621

(i) d(r, g) + O(∆ · |E|) if the graph is a tree, where ∆ is the maximal degree.622

(ii) d(r, g) + 2O(α) ·O(|E|2) where α is the doubling dimension of G.623

Again, E is the set of nodes with incorrect predictions.624

The proof relies on the fact that Algorithm 3 visits a node in Sρ only after visiting all625

nodes in ∪s<ρSs and not finding the goal g; this serves a proof that |E| = φ(g) ≥ 2ρ. The626

proof below shows that (a) the cost of the tour of Cρ is bounded and (b) the total cost of627

each transition is small. Putting these claims together then proves Theorem 4. We start628

with a definition.629

▶ Definition 25 (Midpoint Set). Given a set of nodes U , define its midpoint set M(U) to be630

the set of points w such that the distance from w to all points in U is equal.631

▶ Lemma 26 (φ-Bound Lemma). For any two sets of nodes S, U ⊆ G, we have632 ∑
v∈U

φ(v) ≥ |S \M(U)|.633

Proof. If node w ∈ S does not lie in M(U), then there are two nodes u, v ∈ U for which634

d(u, w) ̸= d(v, w). This means f(w) cannot equal both of them, and hence contributes to at635

least one of φ(u) or φ(v). ◀636

▶ Corollary 27. For any two nodes u, v ∈ G, we have d(u, v) ≤ φ(u) + φ(v).637

Proof. Apply Lemma 26 for set U = {u, v} and S being a (shortest) path between them638

(which includes both u, v). All edges have unit lengths so |S| = d(u, v) + 1; moreover,639

|M(U) ∩ S| ≤ 1. ◀640

5.1.1 Analysis for Trees (Theorem 4(i))641

▶ Lemma 28 (Small Steiner Tree). If ρ = 0 then |Cρ| = 1 else |Cρ| ≤ O(∆ · 2ρ).642

Proof. If ρ = 0, then Sρ contains all nodes with φ(v) = 0; there can be only one such643

node. Else if |Sρ| ≤ 1 then |Cρ| ≤ 1 ≤ 2ρ, so assume that |Sρ| > 1 and let u1, u2 :=644

arg maxu,v∈Sρ
{d(u, v)} be a farthest pair of nodes in Sρ. Consider path p from u1 to u2:645

if all nodes w ∈ p have d(w, u1) ̸= d(w, u2), then the midpoint set |M({u1, u2})| = 0, so646

Lemma 26 says |Cρ| ≤ φ(u1) + φ(u2) ≤ 2× 2ρ = 2ρ+1, giving the proof. Hence, let’s consider647

the case where there exists w ∈ p with d(w, u1) = d(w, u2).648

Let w’s neighbors in Cρ be q1, . . . , qk for some k ≤ ∆. If we delete w and its incident649

edges, let Cρ,i be the subtree of Cρ containing qi; suppose that u1 ∈ Cρ,1 and u2 ∈ Cρ,2.650

Choose any arbitrary vertex ui ∈ (Cρ,i ∩ Sρ); such a vertex exists because Cρ is a min-length651

Steiner tree connecting Sρ. Let U := {u1, . . . , uk}.652

Consider any node x ̸= w in Cρ: this means x ∈ Cρ,j for some j. Choose i ∈ {1, 2}653

such that i ≠ j. By the tree properties, d(x, ui) = d(x, w) + d(w, ui). Moreover, we have654

d(ui, u2−i) ≥ d(uj , u2−i) by our choice of {u1, u2}, so d(w, ui) ≥ d(w, uj). This means655

d(x, ui) = d(x, w) + d(w, ui) ≥ d(x, w) + d(w, uj) = d(x, qj) + d(uj , qj) + 2 > d(x, uj),656

S. Banerjee, V. Cohen-Addad, A. Gupta and Z. Li 52:19

which means x /∈M(U). In summary, M(U) = {w} or |M(U)| = 0, so applying Lemma 26657

in either case gives658

|Cρ| ≤ |Cρ \M(U)|+ 1 ≤
k∑

i=1
φ(ui) + 1 ≤ ∆ · (2ρ + 1). ◀659

▶ Lemma 29 (Small Cost for Transitions). Consider the first round ρ0 such that rρ0 ̸= r, then660

d(r, rρ0) ≤ d(r, g) + |E|+ 2ρ01(ρ0>0). For each subsequent round ρ > ρ0, d(rρ−1, rρ) ≤ 2ρ+1.661

Proof. If the first transition happens in round ρ0, its cost is662

d(r, rρ0) ≤ d(r, g) + d(g, rρ0) ≤ d(r, g) + φ(g) + φ(rρ0) ≤ d(r, g) + |E|+ 2ρ01(ρ0>0),663

where we used Corollary 27 for the second inequality. For all other transitions, Corollary 27664

again gives d(rρ−1, rρ) ≤ φ(rρ−1) + φ(rρ) ≤ 2ρ−1 + 2ρ ≤ 2ρ+1. ◀665

Proof of Theorem 4(i). Suppose g belongs to Sρ, then |E| ≥ 2ρ−1 · 1ρ>0. But now the cost666

over all the transitions is at most d(r, g) + |E| + O(2ρ) · 1ρ>0 by summing the results of667

Lemma 29. The cost of the Euler tours are at most
∑

s≤ρ 2(|Cs| − 1) by Lemma 28, which668

gives at most O(∆ · 2ρ) · 1ρ>0. Combining these proves the theorem. ◀669

5.2 Analysis for Bounded Doubling Dimension (Theorem 4(ii))670

For a graph G = (V, E) with doubling dimension α, and unit-length edges, we consider671

running Algorithm 3, as for the tree case. We merely replace Lemma 28 by the following672

lemma, and the rest of the proof is the same as the proof of the tree case:673

u∗ v∗

c

B(c)

Figure 4 Let u∗, v∗ be the diameter of the set Sρ (i.e, u∗, v∗ = argmaxu,v∈Sρ
d(u, v)). c is any

node in N and B(c) is its neighbor. We show in Claim 31 that the size of B(c) is O(2ρ).

▶ Lemma 30. The total length of the tree Cρ is at most 2O(α) · 22ρ.674

Proof. If |Sρ| ≤ 1, then |Cρ| ≤ 1. Hence next we assume that |Sρ| ≥ 2. Define R :=675

maxu,v∈Sρ
d(u, v), and let u∗, v∗ ∈ Sρ be some points at mutual distance R. Let N be an676

R/8-net of Sρ. (An ε-net N for a set S satisfies the properties (a) d(x, y) ≥ ε for all x, y ∈ N ,677

and (b) for all s ∈ S there exists x ∈ N such that d(x, s) ≤ ε.) Since the metric has doubling678

dimension α, it follows that |N | ≤ (R
R/8)O(α) = 2O(α) [20]. Let each point in Sρ choose a679

closest net point (breaking ties arbitrarily), and let B(c) ⊆ Sρ be the points that chose c ∈ N680

as their closest net point (see Figure 4 for a sketch).681

▷ Claim 31. For each net point c ∈ N , we have |B(c)| ≤ O(2ρ).682

ITCS 2023

52:20 Graph Searching with Predictions

Proof. Because d(v∗, c) + d(u∗, c) ≥ d(u∗, v∗) = R, hence without loss of generality we683

assume d(v∗, c) ≥ R/2. For any point w ∈ B(c), d(w, v∗) ≥ d(v∗, c)−d(c, w) ≥ R/2−R/8 >684

R/8 ≥ d(w, c). Hence w is not in M({c, v∗}). Hence by Lemma 26,685

2ρ+1 ≥ φ(c) + φ(v∗) ≥ |Sρ \M({v∗, c})| ≥ |B(c)|. ◀686

There are 2O(α) net points, so |Sρ| ≤ 2O(α) · 2ρ. Finally, Corollary 27 holds for general687

unit-edge-length graphs, so the cost of connecting any two nodes in Sρ is at most 2ρ, and688

therefore |Cρ| ≤ 2O(α) · 22ρ. ◀689

Using Lemma 30 instead of Lemma 28 in the proof of Theorem 4(i) gives the claimed690

bound of 2O(α) · |E|2, and completes the proof of Theorem 4(ii).691

5.3 Analysis for Bounded Doubling Dimension: Integer Lengths692

In this part, we further generalize the proof above to the case when the edges can have693

positive integer lengths. Consider an graph G = (V, E) with doubling dimension α and694

general (positive integer) edge lengths. Define the ℓ1 analog of the implied-error function to695

be:696

φ1(v) :=
∑
u∈V

|f(u)− d(u, v)|.697

Since we are in the full-information case, we can compute the φ1 value for each node. Observe698

that φ1(g) is the ℓ1-error; we prove the following guarantee.699

▶ Theorem 32. For graph exploration on arbitrary graphs with positive integer edge lengths,700

the analog of Algorithm 3 that uses φ1 instead of φ, incurs a cost d(r, g) + 2O(α) ·O(φ1(g)).701

The proof is almost the same as that for the unit length case. We merely replace Corol-702

lary 27 and Claim 31 by the following two lemmas.703

▶ Lemma 33. For any two vertices u, v, their distance d(u, v) ≤ 1/2(φ1(u) + φ1(v)).704

Proof. By definition of φ1 we have φ1(u)+φ1(v) ≥ |f(u)|+ |f(v)−d(u, v)|+ |f(u)−d(u, v)|+705

|f(v)| ≥ 2d(u, v). ◀706

▷ Claim 34. For each net point c ∈ N , we have
∑

v∈B(c) d(v, u∗) ≤ O(2ρ).707

Proof. Let w be the node among u∗, v∗ that is further from c; by the triangle inequality,708

d(c, w) ≥ R/2. By the properties of the net, d(v, c) ≤ R/8. Again using the triangle709

inequality, d(v, w) ≥ 3R/8. Hence710

φ1(w) + φ1(c) ≥
∑

v∈B(c)

(
|f(v)− d(v, w)|+ |f(v)− d(v, c)|

)
≥ |B(c)| · (3R/8− R/8).711

Since both w, c ∈ Sρ, this implies that712

|B(c)| ·R ≤ 4(φ1(w) + φ1(c)) ≤ O(2ρ).713

Finally, we use that d(v, u∗) ≤ R by our choice of R to complete the proof. ◀714

Now to prove Theorem 32, we mimic the proof of Theorem 4(ii), just substituting715

Lemma 33 and Claim 34 instead of Corollary 27 and Claim 31.716

S. Banerjee, V. Cohen-Addad, A. Gupta and Z. Li 52:21

6 Closing Remarks717

In this paper we study a framework for graph exploration problems with predictions: as the718

graph is explored, each newly observed node gives a prediction of its distance to the goal.719

While graph searching is a well-explored area, and previous works have also studied models720

where nodes give directional/gradient information (“which neighbors are better”), such721

distance-based predictions have not been previously studied, to the best of our knowledge.722

We give algorithms for exploration on trees, where the total distance traveled by the agent723

has a relatively benign dependence on the number of erroneous nodes. We then show results724

for the planning version of the problem, which gives us hope that our exploration results725

may be extendible to broader families of graphs. This is the first, and most natural open726

direction.727

Another intriguing direction is to reduce the space complexity of our algorithms, which728

would allow us to use them on very large implicitly defined graphs (say computation graphs729

for large dynamic programming problems, say those arising from reinforcement learning730

problems, or from branch-and-bound computation trees). Can we give time-space tradeoffs?731

Can we extend our results to multiple agents? A more open-ended direction is to consider732

other forms of quantitative hints for graph searching, beyond distance estimates (studied in733

this paper) and gradient information (studied in previous works).734

References735

1 Steve Alpern and Shmuel Gal. The theory of search games and rendezvous, volume 55 of736

International series in operations research and management science. Kluwer, 2003.737

2 Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and online738

matching problems with machine learned advice. In Hugo Larochelle, Marc’Aurelio Ranzato,739

Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, NeurIPS 2020, 2020.740

3 R.A. Baeza-Yates, J.C. Culberson, and G.J.E. Rawlins. Searching in the plane. Information741

and Computation, 106(2):234–252, 1993. URL: https://www.sciencedirect.com/science/742

article/pii/S0890540183710540, doi:https://doi.org/10.1006/inco.1993.1054.743

4 Étienne Bamas, Andreas Maggiori, Lars Rohwedder, and Ola Svensson. Learning augmented744

energy minimization via speed scaling. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia745

Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, NeurIPS 2020, 2020.746

5 Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, and Manish Purohit. Online learning with747

imperfect hints. In International Conference on Machine Learning, pages 822–831. PMLR,748

2020.749

6 Avrim Blum, Prabhakar Raghavan, and Baruch Schieber. Navigating in unfamiliar geometric750

terrain. SIAM J. Comput., 26(1):110–137, 1997. doi:10.1137/S0097539791194931.751

7 Lucas Boczkowski, Uriel Feige, Amos Korman, and Yoav Rodeh. Navigating in trees with752

permanently noisy advice. ACM Trans. Algorithms, 17(2):15:1–15:27, 2021. doi:10.1145/753

3448305.754

8 Sébastien Bubeck, Christian Coester, and Yuval Rabani. Shortest paths without a map,755

but with an entropic regularizer, 2022. URL: https://arxiv.org/abs/2202.04551, doi:756

10.48550/ARXIV.2202.04551.757

9 William R. Burley. Traversing layered graphs using the work function algorithm. J. Algorithms,758

20(3):479–511, 1996. doi:10.1006/jagm.1996.0024.759

10 Argyrios Deligkas, George B. Mertzios, and Paul G. Spirakis. Binary search in graphs revisited.760

Algorithmica, 81(5):1757–1780, 2019. doi:10.1007/s00453-018-0501-y.761

ITCS 2023

https://www.sciencedirect.com/science/article/pii/S0890540183710540
https://www.sciencedirect.com/science/article/pii/S0890540183710540
https://www.sciencedirect.com/science/article/pii/S0890540183710540
https://doi.org/https://doi.org/10.1006/inco.1993.1054
https://doi.org/10.1137/S0097539791194931
https://doi.org/10.1145/3448305
https://doi.org/10.1145/3448305
https://doi.org/10.1145/3448305
https://arxiv.org/abs/2202.04551
https://doi.org/10.48550/ARXIV.2202.04551
https://doi.org/10.48550/ARXIV.2202.04551
https://doi.org/10.48550/ARXIV.2202.04551
https://doi.org/10.1006/jagm.1996.0024
https://doi.org/10.1007/s00453-018-0501-y

52:22 Graph Searching with Predictions

11 Xiaotie Deng, Tiko Kameda, and Christos H. Papadimitriou. How to learn an unknown762

environment I: the rectilinear case. J. ACM, 45(2):215–245, 1998. doi:10.1145/274787.763

274788.764

12 Xiaotie Deng and Christos H Papadimitriou. Exploring an unknown graph. Journal of Graph765

Theory, 32(3):265–297, 1999.766

13 Dariusz Dereniowski, Stefan Tiegel, Przemyslaw Uznanski, and Daniel Wolleb-Graf. A767

framework for searching in graphs in the presence of errors. In Jeremy T. Fineman and Michael768

Mitzenmacher, editors, 2nd Symposium on Simplicity in Algorithms, SOSA 2019, January769

8-9, 2019, San Diego, CA, USA, volume 69 of OASIcs, pages 4:1–4:17. Schloss Dagstuhl -770

Leibniz-Zentrum für Informatik, 2019. doi:10.4230/OASIcs.SOSA.2019.4.771

14 Paul Dütting, Silvio Lattanzi, Renato Paes Leme, and Sergei Vassilvitskii. Secretaries with772

advice. In Péter Biró, Shuchi Chawla, and Federico Echenique, editors, EC ’21: The 22nd773

ACM Conference on Economics and Computation, Budapest, Hungary, July 18-23, 2021, pages774

409–429. ACM, 2021. doi:10.1145/3465456.3467623.775

15 Ehsan Emamjomeh-Zadeh, David Kempe, and Vikrant Singhal. Deterministic and probabilistic776

binary search in graphs. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the777

48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge,778

MA, USA, June 18-21, 2016, pages 519–532. ACM, 2016. doi:10.1145/2897518.2897656.779

16 Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy informa-780

tion. SIAM J. Comput., 23(5):1001–1018, 1994. doi:10.1137/S0097539791195877.781

17 Amos Fiat, Dean P. Foster, Howard J. Karloff, Yuval Rabani, Yiftach Ravid, and Sundar782

Vishwanathan. Competitive algorithms for layered graph traversal. SIAM J. Comput.,783

28(2):447–462, 1998. doi:10.1137/S0097539795279943.784

18 Shmuel Gal. Search games, volume 149 of Mathematics in Science and Engineering. Academic785

Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980.786

19 Andrew V. Goldberg and Chris Harrelson. Computing the shortest path: A search meets787

graph theory. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete788

Algorithms, SODA 2005, Vancouver, British Columbia, Canada, January 23-25, 2005, pages789

156–165. SIAM, 2005. URL: http://dl.acm.org/citation.cfm?id=1070432.1070455.790

20 Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries, fractals,791

and low-distortion embeddings. In 44th Symposium on Foundations of Computer Science792

(FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings, pages 534–543. IEEE793

Computer Society, 2003. doi:10.1109/SFCS.2003.1238226.794

21 Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency estimation795

algorithms. In International Conference on Learning Representations, 2019.796

22 Piotr Indyk, Frederik Mallmann-Trenn, Slobodan Mitrović, and Ronitt Rubinfeld. Online797

page migration with ml advice. arXiv preprint arXiv:2006.05028, 2020.798

23 Patrick Jaillet and Matthew Stafford. Online searching. Oper. Res., 49(4):501–515, 2001.799

doi:10.1287/opre.49.4.501.11227.800

24 Patrick Jaillet, Matthew Stafford, and Shmuel Gal. Note: Online searching / on the optimality801

of the geometric sequences for the m ray search online searching. Oper. Res., 50(4):744–745,802

2002.803

25 Camille Jordan. Sur les assemblages de lignes. J. Reine Angew. Math., 70:185–190, 1869.804

doi:10.1515/crll.1869.70.185.805

26 Bala Kalyanasundaram and Kirk Pruhs. A competitive analysis of algorithms for search-806

ing unknown scenes. Computational Geometry, 3(3):139–155, 1993. URL: https://807

www.sciencedirect.com/science/article/pii/0925772193900322, doi:https://doi.org/808

10.1016/0925-7721(93)90032-2.809

https://doi.org/10.1145/274787.274788
https://doi.org/10.1145/274787.274788
https://doi.org/10.1145/274787.274788
https://doi.org/10.4230/OASIcs.SOSA.2019.4
https://doi.org/10.1145/3465456.3467623
https://doi.org/10.1145/2897518.2897656
https://doi.org/10.1137/S0097539791195877
https://doi.org/10.1137/S0097539795279943
http://dl.acm.org/citation.cfm?id=1070432.1070455
https://doi.org/10.1109/SFCS.2003.1238226
https://doi.org/10.1287/opre.49.4.501.11227
https://doi.org/10.1515/crll.1869.70.185
https://www.sciencedirect.com/science/article/pii/0925772193900322
https://www.sciencedirect.com/science/article/pii/0925772193900322
https://www.sciencedirect.com/science/article/pii/0925772193900322
https://doi.org/https://doi.org/10.1016/0925-7721(93)90032-2
https://doi.org/https://doi.org/10.1016/0925-7721(93)90032-2
https://doi.org/https://doi.org/10.1016/0925-7721(93)90032-2

S. Banerjee, V. Cohen-Addad, A. Gupta and Z. Li 52:23

27 Bala Kalyanasundaram and Kirk R Pruhs. Constructing competitive tours from local informa-810

tion. Theoretical Computer Science, 130(1):125–138, 1994.811

28 Ming-Yang Kao, Yuan Ma, Michael Sipser, and Yiqun Lisa Yin. Optimal constructions of812

hybrid algorithms. J. Algorithms, 29(1):142–164, 1998. doi:10.1006/jagm.1998.0959.813

29 Ming-Yang Kao, John H. Reif, and Stephen R. Tate. Searching in an unknown environment:814

An optimal randomized algorithm for the cow-path problem. Inf. Comput., 131(1):63–79, 1996.815

doi:10.1006/inco.1996.0092.816

30 Howard J. Karloff, Yuval Rabani, and Yiftach Ravid. Lower bounds for randomized k-server817

and motion-planning algorithms. SIAM J. Comput., 23(2):293–312, 1994. doi:10.1137/818

S0097539792224838.819

31 Richard M. Karp, Michael E. Saks, and Avi Wigderson. On a search problem related to820

branch-and-bound procedures. In 27th Annual Symposium on Foundations of Computer821

Science, Toronto, Canada, 27-29 October 1986, pages 19–28. IEEE Computer Society, 1986.822

doi:10.1109/SFCS.1986.34.823

32 Richard M. Karp and Yanjun Zhang. Randomized parallel algorithms for backtrack search and824

branch-and-bound computation. J. ACM, 40(3):765–789, 1993. doi:10.1145/174130.174145.825

33 Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online826

scheduling via learned weights. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium827

on Discrete Algorithms, pages 1859–1877. SIAM, 2020.828

34 Thomas Lavastida, Benjamin Moseley, R. Ravi, and Chenyang Xu. Learnable and instance-829

robust predictions for online matching, flows and load balancing, 2020. arXiv:2011.11743.830

35 Mohammad Mahdian, Hamid Nazerzadeh, and Amin Saberi. Allocating online advertisement831

space with unreliable estimates. In Jeffrey K. MacKie-Mason, David C. Parkes, and Paul832

Resnick, editors, Proceedings 8th ACM Conference on Electronic Commerce (EC-2007), San833

Diego, California, USA, June 11-15, 2007, pages 288–294. ACM, 2007. doi:10.1145/1250910.834

1250952.835

36 Andrés Muñoz Medina and Sergei Vassilvitskii. Revenue optimization with approximate836

bid predictions. In Proceedings of the 31st International Conference on Neural Information837

Processing Systems, pages 1856–1864, 2017.838

37 Nicole Megow, Kurt Mehlhorn, and Pascal Schweitzer. Online graph exploration: New results839

on old and new algorithms. Theoretical Computer Science, 463:62–72, 2012. URL: https://www.840

sciencedirect.com/science/article/pii/S0304397512006445, doi:https://doi.org/10.841

1016/j.tcs.2012.06.034.842

38 Michael Mitzenmacher. A model for learned bloom filters, and optimizing by sandwiching. In843

Proceedings of the 32nd International Conference on Neural Information Processing Systems,844

pages 462–471, 2018.845

39 Michael Mitzenmacher. Scheduling with predictions and the price of misprediction. In 11th846

Innovations in Theoretical Computer Science Conference (ITCS 2020). Schloss Dagstuhl-847

Leibniz-Zentrum für Informatik, 2020.848

40 Shay Mozes, Krzysztof Onak, and Oren Weimann. Finding an optimal tree searching strategy849

in linear time. In Shang-Hua Teng, editor, Proceedings of the Nineteenth Annual ACM-SIAM850

Symposium on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January851

20-22, 2008, pages 1096–1105. SIAM, 2008. URL: http://dl.acm.org/citation.cfm?id=852

1347082.1347202.853

41 Krzysztof Onak and Pawel Parys. Generalization of binary search: Searching in trees and854

forest-like partial orders. In 47th Annual IEEE Symposium on Foundations of Computer855

Science (FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages856

379–388. IEEE Computer Society, 2006. doi:10.1109/FOCS.2006.32.857

ITCS 2023

https://doi.org/10.1006/jagm.1998.0959
https://doi.org/10.1006/inco.1996.0092
https://doi.org/10.1137/S0097539792224838
https://doi.org/10.1137/S0097539792224838
https://doi.org/10.1137/S0097539792224838
https://doi.org/10.1109/SFCS.1986.34
https://doi.org/10.1145/174130.174145
http://arxiv.org/abs/2011.11743
https://doi.org/10.1145/1250910.1250952
https://doi.org/10.1145/1250910.1250952
https://doi.org/10.1145/1250910.1250952
https://www.sciencedirect.com/science/article/pii/S0304397512006445
https://www.sciencedirect.com/science/article/pii/S0304397512006445
https://www.sciencedirect.com/science/article/pii/S0304397512006445
https://doi.org/https://doi.org/10.1016/j.tcs.2012.06.034
https://doi.org/https://doi.org/10.1016/j.tcs.2012.06.034
https://doi.org/https://doi.org/10.1016/j.tcs.2012.06.034
http://dl.acm.org/citation.cfm?id=1347082.1347202
http://dl.acm.org/citation.cfm?id=1347082.1347202
http://dl.acm.org/citation.cfm?id=1347082.1347202
https://doi.org/10.1109/FOCS.2006.32

52:24 Graph Searching with Predictions

42 Christos H. Papadimitriou and Mihalis Yannakakis. Shortest paths without a map. Theoretical858

Computer Science, 84(1):127–150, 1991. URL: https://www.sciencedirect.com/science/859

article/pii/0304397591902632, doi:https://doi.org/10.1016/0304-3975(91)90263-2.860

43 Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ML861

predictions. In Advances in Neural Information Processing Systems, pages 9661–9670, 2018.862

44 Hariharan Ramesh. On traversing layered graphs on-line. J. Algorithms, 18(3):480–512, 1995.863

doi:10.1006/jagm.1995.1019.864

7 Further Discussion865

7.1 ℓ0-versus-ℓ1 Error in Suggestions866

Most of the paper deals with ℓ0 error: namely, we relate our costs to |E|, the number of867

vertices that give incorrect predictions of their distance to the goal. Another reasonable868

notion of error is the ℓ1 error:
∑

v |f(v)− d(v, g)|.869

For the case of integer edge-lengths and integer predictions, both of which we assume870

in this paper, it is immediate that the ℓ0-error is at most the ℓ1-error: if v is erroneous871

then the former counts 1 and the latter at least 1. If we are given integer edge-lengths but872

fractional predictions, we can round the predictions to the closest integer to get integer-valued873

predictions f ′, and then run our algorithms on f ′. Any prediction that is incorrect in f ′
874

must have incurred an ℓ1-error of at least 1/2 in f . Hence all our results parameterized by875

the ℓ0 error imply results parameterized with the ℓ1 error as well.876

7.2 Extending to General Edge-Lengths877

A natural question is whether a guarantee like the one proved in Theorem 1 can be shown878

for trees with general integer weights: let us see why such a result is not possible.879

1. The first observation is that the notion of error needs to be changed from ℓ0 error880

something that is homogeneous in the distances, so that scaling distances by C > 0 would881

change the error term by C as well. One such goal is to guarantee the total movement to882

be883

O(d(r, g) + some function of the ℓp error),884

where ℓp-error is (
∑

v |f(v)− d(v, g)|p)1/p.885

2. Consider a complete binary tree of height h, having 2h leaves. Let all edges between886

internal nodes have length 0, and edges incident to leaves have length L≫ 1. The goal887

is at one of the leaves. Let all internal nodes have f(v) = L, and let all leaves have888

prediction 2L. Hence the total ℓp error is 2L, whereas any algorithm would have to889

explore half the leaves in expectation to find the goal; this would cost Θ(2h · L), which is890

unbounded as h gets large.891

3. The problem is that zero-length edges allow us to simulate arbitrarily large degrees.892

Moreover, the same argument can be simulated by changing zero-length edges to unit-893

length edges; the essential idea remains the same. and setting f(v) for each node v to be894

L plus its distance to the root. Setting L ≥ 2h gives the total ℓp error to be O(L + 2h),895

whereas any algorithm would incur cost at least ≈ L · 2h.896

This suggests that the right extension to general edge-lengths requires us to go beyond just897

parameterizing our results with the maximum degree ∆; this motivates our study of graphs898

with bounded doubling dimension in §5.899

https://www.sciencedirect.com/science/article/pii/0304397591902632
https://www.sciencedirect.com/science/article/pii/0304397591902632
https://www.sciencedirect.com/science/article/pii/0304397591902632
https://doi.org/https://doi.org/10.1016/0304-3975(91)90263-2
https://doi.org/10.1006/jagm.1995.1019

S. Banerjee, V. Cohen-Addad, A. Gupta and Z. Li 52:25

7.3 Gradient Information900

Consider the information model where the agent gets to see gradient information: each edge901

is imagined to be oriented towards the endpoint with lower distance to the goal. The agent902

can see some noisy version of these directions, and the error is the number of edges with903

incorrect directions. We now show an example where both the optimal distance and the error904

are D, but any algorithm must incur cost Ω(2D). Indeed, take a complete binary tree of905

depth D, with the goal at one of the leaves. Suppose the agent sees all edges being directed906

towards the root. The only erroneous edges are the D edges on the root-goal path. But any907

algorithm must suffer cost Ω(2D).908

ITCS 2023

	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Related Work

	2 Problem Setup and Definitions
	3 Exploring with a Known Target Distance
	3.1 Definitions: Anchors, Degeneracy, and Criticality
	3.2 The TreeX-KnownDist Algorithm
	3.3 Analysis for the TreeX-KnownDist Algorithm
	3.4 Bounding the Extra Exploration
	3.5 Bounding the Movement Cost

	4 The General Tree Exploration Algorithm
	4.1 Definitions
	4.2 The TreeX Algorithm
	4.3 Analysis of the TreeX Algorithm

	5 The Planning Problem
	5.1 Analysis
	5.1.1 Analysis for Trees (thm:full-info(i))

	5.2 Analysis for Bounded Doubling Dimension (thm:full-info(ii))
	5.3 Analysis for Bounded Doubling Dimension: Integer Lengths

	6 Closing Remarks
	7 Further Discussion
	7.1 0-versus-1 Error in Suggestions
	7.2 Extending to General Edge-Lengths
	7.3 Gradient Information

