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Abstract
Priority queues have long been used to increase revenue by exploiting the fact that
time-sensitive customers are willing to pay for shorter waiting times. This fact begs the
question: Can one make even more revenue by relaxing the strictness of the priority
policy? This paper answers this question under the unobservable queue setting, where
customers are heterogeneous in their time-sensitivity; specifically the time-sensitivity
of customers is allowed to follow an arbitrary distribution. In this paper, we prove nec-
essary and sufficient conditions under which partial priority can increase the revenue.
Specifically, we find a surprising result: Although partial priority offers much more
flexibility than strict priority, partial priority only increases revenue if there are two
additional constraints on the service provider, one setting a maximum price and the
other setting a maximumwaiting time. In the absence of either of these constraints, we
prove that strict prioritymaximizes revenue. Finally, in situationswhere partial priority
increases the revenue, we analytically characterize the amount of improvement.

Keywords Hybrid · Revenue maximization · Priority queue · Achievability region ·
Bounded wait times · Bounded price · Time-sensitivity

Mathematics Subject Classification 60K25 · 68M20 · 90B36 · 91B32

1 Introduction

The concept of generating revenue by selling queue priority is well-established, par-
ticularly when serving customers with different degrees of time-sensitivity (cost for
waiting). For example, time-sensitive customers may pay for a Pre-Check to join a pri-
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Fig. 1 Achievability region of
strict priority and partial priority

ority line at the security check in airports, for expedited passport service, or expedited
manufacturing of a critical good.

In practice, priority is typically implemented as a strict priority system, where first-
class customers always receive service before all second-class customers.1 Numerous
studies have examined revenue-maximizing mechanisms and pricing strategies under
strict priority (e.g., [1–6]). These studies have shown that one can leverage the different
time sensitivity of customers to increase revenue.

This begs the question of whether one can make even more money by relaxing the
strictness of the priority. For example, imagine that class 1 customers get priority with
some probability q, say 70%, and class 2 customers get priority with probability 1−q.
We refer to this policy as Hybrid(q) (see Sect. 3.1 for more details). Hybrid(q) falls
within the general class of partial priority policies which offer more flexibility for the
service provider.

To understand the added flexibility attainable from partial priority, we look at Fig. 1.
Let E [W1], respectively E [W2], denote the expected waiting time of first-class and
second-class customers. Then, under strict priority, the set of all possible expected
waiting time pairs under all possible arrival rates is the blue shaded region in Fig. 1.
In contrast, in yellow we see the many additional pairs that are possible under partial
priority. Following [7], we refer to all pairs (blue + yellow) as the Achievability Region
of a partial priority system.2

While many papers do not explicitly restrict themselves to strict priority (e.g., [9–
20]), they also do not specify whether non-strict priority is actually helpful. Given
that implementing partial priority can be more challenging than implementing strict
priority, it is important to look at the following questions:

Does the extra flexibility afforded by partial priority policies bring in more
revenue? If so, what is the amount of the increase in revenue?

Of all papers mentioned above, only two touch on the first question and none of
them answers the second. Moreover, their answers are limited to narrow settings.
Specifically, Hassin et al. [16] only demonstrate the benefit of partial priority for

1 Throughout this paper, we discuss non-preemptive policies, which means when customers are receiving
service, they cannot be interrupted by other customers.
2 Previous works (e.g., [7, 8]) only talk about the achievability region for fixed arrival rates. We generalize
the definition to all possible arrival rates, and the proof is in Appendix: B.
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revenue maximization numerically, in the special case where the service provider is
limited to an exogenous fixed price for each of the two classes. And in [10], customers
in both classes have the same time-sensitivity, although they are different in howmany
times they want to use the system. See Sect. 2 for more details on prior works.

The goal of this paper is to answer both questions under a more general model, in
which customers’ time sensitivities are drawn from an arbitrary distribution.

1.1 Our model

We model the common situation where there is a social amenity that attracts a steady
stream of people. Everyone joins the queue, but people can choose to pay extra for
priority within the queue.

A typical example is certain popular attractions at Disney World: after entering
Disney World, customers get access to free “standby” lines for attractions. They also
have the option to purchase a priority pass called a lightning pass for an added cost.
At each attraction, customers possessing a lightning pass for the attraction enter a
fast queue which has strict priority over the standby queue [21]. When making their
decision to buy a lightning pass, Disney customers do not get to see the queue at each
attraction [22]. Thus, customers are in an unobservable setting, where they only have
historical estimates of mean waiting times with and without priority.

Consistent with the above DisneyWorld example, we assume that customers arrive
into the system (i.e., an attraction at DisneyWorld) according to a Poisson process with
rate λ. The customers only differ in their time-sensitivity, modeled by their impatience
factor, C , which can follow any given distribution. The service provider needs to
serve all the customers, but it wants to leverage the fact that some customers are more
impatient to generate revenue. Thus, the service provider selects a priority policy
(not necessarily strict priority) and sells the priority (access to queue 1) for price $.
Without loss of generality, we assume the price to enter queue 2 is free: Having a
nonzero general entrance fee, as in the Disney example, adds a constant to the total
revenue and does not change the optimization problem.

Again consistent with the Disney World example, our model assumes that the
state of the queues is unobservable to the customers, meaning that the customers can
only make decisions based on the expected waiting time pair, E [W1] ,E [W2]. More
specifically, each customer chooses to buy priority or not based on the price, $, the
expected waiting time at each queue, and her own impatience factor: A customer with
impatience factor c is willing to buy priority iff

c · (E [W1] − E [W2]) > $.

Let λ1 denote the arrival rate of customers choosing to buy the priority (and enter
queue 1), and λ2 = λ − λ1 denote the arrival rate of queue 2. The goal of the service
provider is to maximize their revenue rate where:

Revenue rate = λ1 · $.

The model is illustrated in Fig. 2, and we provide more details in Sect. 3.
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Fig. 2 Illustration for the model

1.2 Common restrictions within our setting

Absent any restrictions on our setting, it is straightforward to show that strict priority
is superior to partial priority. To see why, observe that queue 2 customers do not
contribute to the revenue. Thus, any (partial) priority given to queue 2 customers is
wasted. Therefore, a strict priority policy is optimal.

In practice, however, there are a few common restrictions within our setting. First
of all, the service provider typically needs to ensure that the expected waiting time
for class two customers, E [W2], does not get unbearably long. For example, Disney
seems to try to limit E [W2] < �W by limiting the number of people who can buy
lightning passes within a given time-period for a given attraction (hence controlling
λ1). It is unknown whether strict priority is still optimal in maximizing revenue given
this restriction.

Secondly, there is typically an upper limit,�$, on how much the service provider
charges. For example, in an effort to maintain its family-friendly image, Disney keeps
the price of its lightning pass under �$ = 30 dollars per attraction, despite many
customers likely being willing to pay more (an example of the media pressure on
Disney over costs, including for lightning passes, is given in [23]). Again, it is unknown
whether strict priority is still optimal given this restriction.

The literature on pricing for queueing includes many different models. As such,
our restrictions on the maximum expected waiting time, �W , and the price cap, �$,
may show up in the literature in different forms. For example, in papers that assume
customers have a “utility" for service, the fact that customers’ net utility must be
positive functions as a restriction, similarly to our �W or�$ restrictions. In our model,
since all customers enter the system, there is no need for a utility and thus we can be
more explicit about our �W and�$ restrictions.
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1.3 Our results and contributions

There are many reasons to believe that partial priority should increase revenue. For
example, by offering class 2 customers slightly more priority, we can lessen their
waiting time, making it easier to adhere to the �W restriction, thus allowing us to admit
more class 1 paying customers than under strict priority.

Surprisingly,we prove that if either of the above two restrictions (�W or�$) are absent,
then strict prioritywill maximize revenue (see Corollary 1 andRemark 1). That is, both
the restriction �W and the�$ are needed for partial priority to help. Essentially, we prove
a necessary and sufficient condition on the system parameters under which revenue
is improved via partial priority (Theorem 1). This effectively tells us how tight the
restrictions must be for partial priority policies to increase revenue. Moreover, when
partial priority does help increase revenue, we provide Theorem 2 that characterizes
the ratio and the absolute amount of revenue improvement. These two results are the
main contributions of our paper.

2 Prior work

Our work generally fits within a research area called “pricing for queueing." This is an
area where time-sensitive customers are willing to pay for priority.We start in Sect. 2.1
by reviewing all the related work on pricing for queueing.

Our work also fits within an area called achievability region analysis. This is an
area where one tries to understand what waiting times are possible/impossible. We
discuss prior work on achievability region analysis in Sect. 2.2.

2.1 Pricing for queueing

Research on charging people prices in exchange for shorter queueing times is not new.
The field was perhaps started by Naor in 1969, [24]. Hassin and Haviv’s highly cited
book followed in 2003 ([4]); it provides an excellent survey of this field.

The general setting is one in which customers arrive and are charged different
amounts to enter different queues, where some queues have a higher priority of being
served than others. In someworks, it is assumed that the arriving customers can observe
the queue lengths when deciding which queue to join [6, 25–28] In contrast, our paper
focuses on the unobservable setting where arriving customers cannot see the queues
and need to make their decisions based only on long-run expected waiting times (and
prices). For the rest of this section, we limit our attention to the unobservable setting.

Within the unobservable setting, several streams of work exist.
Strict priority the largest stream of work studies pricing under a strict priority

queueing policy, where customers in one queue always have 100% priority over those
in another queue. Papers ranging over several decades have worked on deriving the
optimal pricing mechanism in a strict priority system, e.g., [1–3, 5, 29] While well-
studied, this stream of work is less related to our paper, and we lay more emphasis on
related work under partial priority.
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Partial priority with DPS queueing policy Discriminatory Processor Sharing
(DPS) is one of the most typical partial priority policies. Under the DPS policy, the
server is time-shared between two queues in a preemptive manner, where each queue
gets some fraction of the server. The goal of most of the papers on pricing with DPS
is not to maximize revenue, but rather to study the equilibrium behavior of customers
[17, 18]). An exception is [16], in which Hassin and Haviv characterize the optimal
DPS policy to maximize the revenue when given an exogenous fixed price for each of
the two queues. They provide numerical evidence that DPS can bring more revenue
than strict priority policy without analytical proof.

It is interesting that the authors of [16] first prove theorems with respect to equi-
librium behaviors in the setting where prices are not fixed, but change to fixed prices
setting when talking about maximizing the revenue. Our paper provides an intuitive
explanation for this fact: Unless the prices are constrained, partial priority cannot
beat strict priority in maximizing the revenue. Observe that fixing the prices is more
restrictive than having a price cap.

Partial priority with accumulated priority policy The accumulated priority pol-
icy was first raised and analyzed in [30]. Under the accumulated priority policy, every
customer enters the systemwith priority 0. While waiting, each customer accumulates
her priority with rate b, and customers in the high-priority classes accumulate priority
with higher rate. At each moment of time, the policy serves the customer with the
highest priority. Accumulated priority is a type of partial priority, in that low priority
class customers (the ones who accumulate priority with a lower rate) may get ahead
of high priority class customers if they have waited for a longer time.

Only recently, accumulated priority has been considered in the area of pricing for
queueing [19, 20]. However, these papers assume that the price must have a linear
relation with the accumulating rate. For example, in [19], the price for having the
accumulating rate b is also b. In this way, while interesting results are derived, this
stream of papers is less related to our paper where the price does not need to follow a
given function of the priority.

Partial priority with unspecified queueing policy There is also a large stream of
work which does not specify the queueing policy. Instead, their goal is to specify what
the expected waiting times would be in an optimal “price-delay menu" that could be
offered to customers. They do this by leveraging a body of research on achievability
regions (see Sect. 2.2); examples include [9–15], and Afeche established a standard
framework in [15]. However, most of these papers do not compare with strict priority.

An exception is [10], in which the authors analytically characterize cases where
the optimal policy is strict priority, First Come First Serve (FCFS), or some partial
priority. However, in [10] customers have the same time sensitivity and only differ in
their “usage rate”; thus, FCFS might be the optimal policy. In contrast, in our setting
where customers can have different time-sensitivity, FCFS can never be optimal, and
the comparison is more on the priority side. Moreover, another difference is that our
paper characterizes how much partial priority can increase the revenue, while the
characterization in [10] is only qualitative.

Partial priority in other settings The idea of a “partial priority" has come up in
other settings that do not involve pricing or queueing. Some examples include partial
priority in networks [31–34], and inventory rationing with partial priority [35, 36].
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While these papers show that partial priority can be useful in many settings, they
neither consider pricing nor strategic customers.

2.2 Achievability region

Our paper also contributes to a relatively understudied but important research area on
achievability regions. This concept was first introduced by Coffman in 1980, [7], with
subsequent analysis by Federgruen and Groenevelt [8]. Importantly, all works in this
literature assumed a default partial priority policy proposed in [7]: the service provider
randomly selects a strict priority to implement at the beginning of each busy period.

Our work extends this area of research in twoways: (i)We analyze the achievability
region of a new policy, Hybrid, and (ii) unlike previous works, which primarily focus
on fixed arrival rates for each job type, we explore the entire space of possible arrival
rates. As a result, none of the existing papers have captured the blue “tornado"-shaped
achievability regions of strict priority that we show in Fig. 1, nor the broad yellow
region spanned by partial priority policies.

3 Model

In this section, we describe our model in Sect. 1 in detail. We will first define the
“Hybrid” policy, which is a canonical representative of partial priority policies, and
then describe our model in detail. Note that although the model is stated for the Hybrid
policy, all theorems hold generally for partial priority policies.

3.1 Hybrid policy

The Hybrid policy is defined through a parameter q ∈ [0, 1]: Whenever the server is
free and there exist customers in the queue, Hybrid(q) flips a coin which comes up
heads with probability q and tails otherwise.

• If the coin comes up heads, then the server takes a customer from queue 1. If
there are no customers in queue 1, then the server takes a customer from queue 2,
assuming one exists.

• If the coin comes up tails, then the server takes a customer fromqueue 2. If there are
no customers in queue 2, then the server takes a customer from queue 1, assuming
one exists.

Note that if the system is empty, Hybrid(q) will wait for the next arrival, serve that
arrival, and flip its coin at that time.

Observe that Hybrid differs from the policy in [7] in that a decision is made after
each customer service, rather than only at the end of a busy period. In this way, Hybrid
offers a more fine-grained partial priority, while still enjoying the same achievability
region as the other partial priority policies.

We defer the analysis of the achievability region of Hybrid (i.e., the proof of Fig. 1)
to Appendix: B.
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3.2 Our model

In this section, we describe our model in detail.
System: There is a single server which serves customers, who arrive according

to a Poisson process with rate λ. All customers must be served (no abandonment).
Customers are divided into two queues (queue 1 and queue 2). Customers have to pay
a price, $, to enter queue 1. Entering queue 2 is free. When the server is free, the server
serves a customer according to the Hybrid(q) policy. If q = 1, this corresponds to
strict priority.

Customers:All customers have i.i.d. service requirement (service timeneed) drawn
from the distribution denoted by random variable S, where the mean of S isE [S] = 1

μ

and E
[
S3

]
exists (while the assumption on E

[
S3

]
is only needed for Proposition 6,

that proposition is key to the rest of the paper). Let ρ := λ
μ

< 1 denote the total load
of the system.

Customers are time-sensitive, meaning that they are willing to pay for shorter wait-
ing time. Specifically, there is an impatience factor, C , associated with each customer,
where C is a random variable specified in dollars per unit waiting time. Thus, a cus-
tomer with impatience C , who experiences waiting time W , will experience a cost of
C · W dollars. We make a mild assumption that the tail of C , denoted by �FC (·), is
continuous and invertible.

We say that a customer is class 1 if she decides to buy priority (i.e., join queue 1).
Those customers who choose not to buy priority are class 2. Let λ1 denote the arrival
rate of class 1 customers and let λ2 denote the arrival rate of class 2 customers.

Waiting times The waiting time of a customer is the time from when the customer
arrives to the system until the customer first receives service. We use the random
variable W1 to denote the waiting time of class 1 customers. Likewise W2 will denote
the waiting time of class 2 customers.

Customers are willing to pay for priority if and only if the expected value of the
reduction in their waiting time from buying priority is at least $, the price of joining the
priority queue. Mathematically, a customer with impatience factor C = c is willing
to buy priority iff

c(E [W2] − E [W1]) � $. (1)

We assume that there is a restriction on the maximum mean waiting time of class
2 customers; this upper limit is �W . Thus, we are restricted to:

E [W1] < E [W2] � �W . (2)

Price cap The service provider has to set the price no more than the price cap�$,
i.e.,

$ ��$. (3)
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Revenue The revenue that the service provider brings in per unit time is defined
as:

Revenue := λ1 · $.

Decision variables The service provider can control $, λ1 and the parameter q
for the queueing policy Hybrid(q) to maximize its revenue. The service provider,
however, is required to adhere to waiting times and prices that are not excessive (the
particular values of �W and�$ are externally provided).

Customers’ incentive inequality: Observe that the fraction of customers who buy
priority, namely λ1

λ
, is upper-bounded by the fraction who want to buy priority (i.e.,

(1) holds). Mathematically this says:

λ1

λ
� �FC

(
$

E [W2] − E [W1]

)
. (4)

In our model, the service provider can limit λ1 by controlling the number of priority
tickets sold. There is a slightly different model where the service provider cannot limit
λ1, i.e., whenever customers want to buy the priority, there is no way of stopping them.
In this case, the inequality (4) is an equality. We discuss this variation of our model in
Sect. 4.3.

Optimization problem The service provider’s optimization problem can be for-
mulated as follows:

maximize
λ1,q,$

$ · λ1

s.t.
λ1

λ
� �FC

(
$

E [W2] − E [W1]

)
,

E [W2] � �W ,

$ ��$,
0 � q � 1.

(5)

Traffic assumptions Let wFCFS denote the mean waiting time if all customers are
served in First-Come-First-Served order (FCFS). Mathematically, wFCFS := ρE[Se]

1−ρ
.

To eliminate uninteresting cases, we make the following assumptions on �W :

1. �W > wFCFS . If �W < wFCFS , no scheduling policy can meet the requirement
E [W2] � �W . If �W = wFCFS , only FCFS canmeet the requirement and no revenue
can be made.

2. �W <
wFCFS
1−ρ

. Otherwise the requirement E [W2] � �W is fulfilled even when all
customers go to queue 1 under strict priority. In this case, strict priority maximizes
the revenue.
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Table 1 Additional notation table

Notation Mathematical definition Meaning

g(x) See Definition 1 Inverse of �FC (·)
θ(λ1, q) See Definition 2 The maximum price charged without the price cap

λ̂1 μ
(
1 − wFCFS�W

)
The maximum arrival rate under strict priority to

ensure E [W2] � �W
Superscript * (e.g., λ∗

1) – Values in the optimal solution

Superscript ′ (e.g., λ′
1) – Temporary notation for proofs

Improvement Ratio See Definition 4 The ratio of the optimal revenue under Hybrid to

that under strict priority

4 When and howmuch does hybrid help?

In this section, we solve the constrained optimization problem (5) to investigate when
and how much Hybrid (or partial priority) helps. The main goal of this section is to
prove Theorems 1 and 2, which are stated below for easy reference, but will be proved
later in the section. These theorems use notation which is explained in Table 1 and
will be defined in this section.

Notably, a straightforward corollary of Theorem 1, Corollary 1, shows that partial
priority increases revenue only if both the�$ and �W restrictions exist.

Theorem 1 (When?)Hybrid (or partial priority) increases the revenue compared with
strict priority if and only if

�W − wFCFS

�W < ρ �FC
( �$

�W · ρ

)

. (6)

Theorem 2 (How much?) If the condition (6) in Theorem 1 holds, then

Improvement Ratio = λ∗
1

λ̂1
,

where λ∗
1 is the unique solution of

λ

λ∗
1

· g
(

λ∗
1

λ

)
=

�$
�W − wFCFS

,

and g is defined in Definition 1.

Weproceed as follows: In Sect. 4.1, we introduce some notation to simplify the opti-
mization problem (5) from Sect. 3. Then in Sect. 4.2, we give the proof of Theorem 1
and Theorem 2. Finally in Sect. 4.3, we discuss and present analogous theorems for a
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variant of our model in which λ1 cannot be limited by the service provider. Table 1
summarizes new notation introduced in this section.

4.1 Simplification of the optimization problem

The goal of this section is to rewrite the optimization problem (5). To do this, we
introduce some new notation. We first define a function g(·) to be the inverse of
�FC (·). Under the assumption that �FC (·) is invertible and continuous, we define the
continuous function g as follows.

Definition 1 (g(x)) For any x ∈ [0, 1] define g(x) to be

g(x) := �F−1
C (x).

We next define a shorthand θ(λ1, q). For now the definition seems arbitrary, but
we will see that this term emerges in the proof of Lemma 1. Intuitively, for given λ1
and q, we can think of θ(λ1, q) as the maximum price that the service provider can
charge to ensure that at least λ1

λ
fraction of the customers are willing to buy priority.

In other words, θ(λ1, q) is an upper bound on the price that the service provider can
charge, given λ1 and q, and given no price cap.

Definition 2 (θ(λ1, q)) Define

θ(λ1, q) := g

(
λ1

λ

)
· λ

λ1
(E [W2 | λ1, q] − wFCFS) .

Now we give the simplification of the optimization problem (5).

Lemma 1 (Simplification of the optimization problem) The optimization problem (5)
is equivalent to the optimization problem in (7):

maximize
λ1,q

$ · λ1

s.t. $ = min{θ(λ1, q),�$},
E [W2] � �W ,

1 � q � 0.

(7)

Proof First, we simplify the constraint (4). By the conservation law (see [37] or proof
of Proposition 6),

λ1

λ
· E [W1] + λ2

λ
· E [W2] = wFCFS .

Thus, we have that

E [W2] − E [W1] = λ

λ1

(
E [W2] − λ1

λ
· E [W1] − λ2

λ
· E [W2]

)
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= λ

λ1
(E [W2] − wFCFS) .

Thus, the constraint (4) can be reformulated into

λ1

λ
� �FC

(
$

E [W2] − E [W1]

)
⇐⇒ λ1

λ
� �FC

(
λ1

λ
· $

E [W2] − wFCFS

)
.

We now apply g on both sides. Noticing that g is a decreasing function, we have
that the constraint (4) is equivalent to

g

(
λ1

λ

)
� λ1

λ
· $

E [W2] − wFCFS
,

which is further equivalent to
$ � θ(λ1, q).

Observe that the only two constraints on $ are $ ��$ and $ � θ(λ1, q). Hence, we
know that, given λ1, q, the revenue maximizing $ should be at most min{θ(λ1, q),�$}.
But this upper bound is actually an equality because as long as λ1 is fixed, higher price
is better. Hence, we have that $ = min{θ(λ1, q),�$} in (7). This finishes the proof. �	

4.2 When and howmuch does hybrid (partial priority) help?

In this section, we will solve the optimization problem (7) to prove the main theorems.
Since the feasible set of this optimization problem is compact and the optimization is
finite, an optimal solution exists. Throughout this paper, we will use the superscript ∗
to denote the optimal solution. Specifically, the triple (λ∗

1, q
∗, $∗) denotes the optimal

values of each of the decision variables. Furthermore, E
[
W ∗

2

] := E
[
W2 | λ∗

1, q
∗] and

θ∗ := θ(λ∗
1, q

∗).
Lemma 2 provides some conditions on the optimal solution.

Lemma 2 At least one of the following conditions must hold:

1. E
[
W ∗

2

] = �W and θ∗ =�$.
2. q∗ = 1.

The first condition says that both the constraints on �W and on �$ are binding. The
second condition says that strict priority is optimal.

Proof We prove this by contradiction. Suppose both items (1) and (2) above are false.
Then, we have q∗ < 1. We discuss different cases and show that all of them lead to
contradictions.

We perturb λ∗
1 and q

∗ in all cases to prove contradictions. This approach is feasible
because λ∗

1 ∈ (0, λ) and q∗ ∈ (0, 1). To justify this, note that if λ∗
1 = 0, the revenue

would be zero which is clearly suboptimal. If λ∗
1 = λ, then θ∗ = 0 because g(1) = 0,

which also leads to zero revenue. If q∗ = 0, then θ(λ∗
1, q

∗ = 0) < 0 because
E

[
W2 | λ∗

1, q
∗ = 0

]
< wFCFS . Finally, if q∗ = 1, condition (2) above holds.
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Case 1: E
[
W ∗

2

]
< �W . We increase λ∗

1 to λ′
1 = λ∗

1 + ε. Now we perturb q∗ to q ′
such that θ(λ′

1, q
′) = θ∗.

This can be done when ε is small enough by the continuity of θ . This change of
value can still guarantee that E

[
W ′

2

]
� �W if ε is small enough. In this way, λ1 is

increased and the price is the same, which increases the revenue.
Case 2: E

[
W ∗

2

] = �W and θ∗ > �$. In this case, the revenue is�$ · λ∗
1. Then there

exists a small enough ε > 0 such that we can increase λ∗
1 to λ′

1 = λ∗
1 + ε and decrease

q∗ to q ′ making E
[
W2 | λ′

1, q
′] = E

[
W ∗

2

]
. We now make ε small enough so that

θ(λ′
1, q

′) ��$ still holds. In this way, λ1 is increased, and the price is still�$. This leads
to a larger revenue which is a contradiction.

Case 3: E
[
W ∗

2

] = �W , θ∗ <�$. In this case, the revenue is

Revenue∗ = θ∗ · λ∗
1 = λ · g

(
λ∗
1

λ

)
· (E [W2] − wFCFS) .

Thus, we can decrease λ∗
1 to λ′

1 = λ∗
1 − ε and increase q∗ to q ′ such that

E
[
W2 | λ′

1, q
′] = E

[
W ∗

2

]
. We now make ε small enough such that θ(λ′

1, q
′) � �$

still holds. In this way, the revenue is also increased because g is decreasing with
respect to λ1, which is again a contradiction.

Combining all those three cases yields the proof. �	

We define the notation λ̂1 for the following proofs. Intuitively, λ̂1 is the maximum
arrival rate under strict priority to ensure E [W2] � �W . By using (18), which says
E [W2 | λ1, q = 1] = wFCFS

1−ρ1
, we can further get a closed form for λ̂1.

Definition 3 (λ̂1) Define λ̂1 to be the solution of E
[
W2 | λ̂1, q = 1

] = �W . Mathe-
matically,

λ̂1 = μ

(
1 − wFCFS

�W
)

. (8)

Now we can prove our main lemma characterizing when Hybrid helps increase the
revenue.

Lemma 3 Hybrid (or partial priority) helps increase the revenue compared with strict
priority if and only if

θ(λ̂1, q = 1) >�$. (9)

Proof We first prove that θ(λ̂1, q = 1) > �$ is a necessary condition for Hybrid to
help.

Suppose by contradiction that θ(λ̂1, q = 1) ��$ and assume that Hybrid still helps.
This is saying that we obtain the optimal revenue with q∗ < 1. By Lemma 2, we have
that E

[
W ∗

2

] = �W and θ∗ =�$. Then

Revenue∗ = θ∗·λ∗
1 = λ·g

(
λ∗
1

λ

)
·(E [

W ∗
2

] − wFCFS
) = λ·g

(
λ∗
1

λ

)
·( �W − wFCFS

)
.
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On the other hand, if we set λ1 = λ̂1 under strict priority, the revenue obtained is

Revenue′ = θ(λ̂1, q = 1) · λ̂1 = λ · g
(

λ̂1

λ

)
· ( �W − wFCFS

)
.

Since the optimal q∗ < 1, we know that Revenue∗ > Revenue′, which indicates
λ∗
1 < λ̂1 because g is decreasing.
But this leads to the contradiction:

�W = E
[
W2 | λ∗

1, q
∗] < E

[
W2 | λ∗

1, q = 1
]

� E
[
W2 | λ̂1, q = 1

] = �W .

We next prove that θ(λ̂1, q = 1) > �$ is a sufficient condition for Hybrid to help.
In this case, the optimal revenue under strict priority is achieved at λ̂1 because any
parameters satisfying the restriction under strict priority satisfy λ1 � λ̂1 and $ ��$.

Now we can pick a small ε > 0 and set q ′ = 1 − ε. Accordingly, we can increase
λ̂1 to λ′

1 such that E
[
W2 | λ̂1, q = 1

] = E
[
W2 | λ′

1, q
′]. Pick ε small enough such

that θ(λ′
1, q

′) � �$ still holds. In this way, the revenue is�$ · λ′
1 > �$ · λ̂1 which is the

optimal revenue under strict priority. �	
Our main theorem characterizing the necessary and sufficient condition for Hybrid

(or partial priority) to help follows directly by simplifying the condition in Lemma 3.

Theorem 1 Hybrid (or partial priority) helps increase the revenue compared with
strict priority if and only if

�W − wFCFS

�W < ρ �FC
( �$

�W · ρ

)

. (10)

Proof We substitute (8) into condition (9), yielding:

θ(λ̂1, q = 1) = g

(
λ̂1

λ

)
· λ

λ̂1

(
E

[
W2 | λ̂1, q = 1

] − wFCFS
)

= g

(
λ̂1

λ

)
· λ

λ̂1

( �W − wFCFS
)
. (11)

Thus, condition (9) is equivalent to:

θ(λ̂1, q = 1) >�$ ⇐⇒ g

(
λ̂1

λ

)
>

λ̂1

λ
·

�$
�W − wFCFS

by (11)

⇐⇒ g

(
λ̂1

λ

)
>

1

λ
· μ · �W − wFCFS

�W ·
�$

�W − wFCFS

⇐⇒ g

(
λ̂1

λ

)
>

�$
�W · ρ
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⇐⇒ λ̂1

λ
< �FC

( �$
�W · ρ

)

⇐⇒ μ(1 − wFCFS�W )

λ
< �FC

( �$
�W · ρ

)

⇐⇒ �W − wFCFS

�W < ρ �FC
( �$

�W · ρ

)

.

�	
A straightforward corollary of Theorem 1 is presented below.

Corollary 1 Partial priority increases revenue only if both the �$ and �W restrictions
exist. In otherwords, partial priority policies do not increase the revenuewhen�$ → ∞
or �W → ∞.

Proof We only need to examine whether condition (10) holds when�$ → ∞ or �W →
∞.

When�$ → ∞: The left-hand side of (10) is positive and the right-hand side goes
to 0.

When �W → ∞: The right-hand side of (10) is smaller than 1 since both ρ < 1
and �FC (·) � 1. The left-hand side goes to 1. �	
Remark 1 Wepresent some intuitions forwhy both restrictions are necessary for partial
priority to improve revenue over strict priority.

Under strict priority, because of the �W restriction, the service provider must limit
the rate of sales of priority passes. The few customers who buy priority have high
time-sensitivity (tail of C), so they are willing to pay a lot, but the service provider is
also limited by the�$ restriction. This leaves money on the table (the service provider
does not get to make as much revenue as they would like). By applying partial priority,
the class 2 customers experience less waiting. Hence, the service provider is allowed
to sell more priority passes (at the same price), while still adhering to the �W restriction,
thus making more revenue.

Pictorially, let’s revisit Fig. 1. Since class 1 customers have (partial) priority over
class 2 customers, we only show the half plane where E [W1] < E [W2]. Suppose
the optimal strict priority policy yields the waiting time pair shown in Fig. 3(a) and
suppose that the optimal price already meets the constraint�$. In order to increase the
revenue, one wants to increase λ1. However that yields an infeasible waiting time pair
under strict priority (as shown in Fig. 3(b)). The way that Hybrid can bring us more
money is shown in Fig. 3(c): One can use Hybrid to make the solution feasible again
while keeping the λ1 and the price the same as those in Fig. 3. The question of whether
Hybrid (and partial priorities) increases revenue depends on whether or not customers
are still willing to pay �$ after transitioning to the new waiting time pair shown in
Fig. 3(c).

We see that both restrictions are important in this intuition, and without any one of
them, the intuition breaks.
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Fig. 3 Pictorial illustration for how partial priority may improve the revenue

Finally, we present a theorem that demonstrates the extent to which Hybrid outper-
forms strict priority. Themetricswe use are the improvement ratio and the improvement
amount.

Definition 4 Let Revenue(q = 1) denote the optimal revenue under strict priority and
Revenue∗ denote the optimal revenue under Hybrid (or partial priority). Define the
improvement ratio and the improvement amount to be

Improvement Ratio := Revenue∗

Revenue(q = 1)
.

Improvement Amount := Revenue∗ − Revenue(q = 1).

Now we prove our main theorem characterizing the improvement ratio and the
improvement amount of Hybrid.

Theorem 2 (How much?) If condition (10) in Theorem 1 holds, then

Improvement Ratio = λ∗
1

λ̂1
, and Improvement Amount =

(
λ∗
1

λ̂1
− 1

)
· λ̂1 ·�$,
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where λ∗
1 is the unique solution of

λ

λ∗
1

· g
(

λ∗
1

λ

)
=

�$
�W − wFCFS

. (12)

Proof Condition (10) in Theorem 1 is equivalent to condition (9) in Lemma 3, which
is θ(λ̂1, q = 1) > �$. In this case, the optimal revenue under strict priority is λ̂1 ·�$,
which is achieved when λ1 = λ̂1. The reason why no larger revenue can be achieved
is that under strict priority, λ1 � λ̂1 because of the �W restriction and $ ��$. This gives
that Revenue(q = 1) = λ̂1 ·�$.

On the other hand, since condition (10) holds, by Theorem 1, we know that the
optimal q∗ < 1. Thus by Lemma 2 we know that

θ∗ =�$, E
[
W ∗

2

] = �W . (13)

This shows that the improvement ratio is given by:

Improvement Ratio =
�$ · λ∗

1
�$ · λ̂1

= λ∗
1

λ̂1
.

The expression for λ∗
1 can be solved from the definition of θ(λ1, q) and (13), which

is equivalent to
λ

λ∗
1

· g
(

λ∗
1

λ

)
=

�$
�W − wFCFS

.

Note that the left-hand side of the above equation is continuous, monotonic with λ∗
1,

and ranges from ∞ to 0 when λ∗
1 takes on values from 0 to λ. Thus there exists a

unique solution for λ∗
1.

Finally, the formula for the improvement amount is given by

Improvement Amount = (Improvement Ratio − 1) · Revenue(q = 1).

�	
An immediate corollary of Theorem 2 is that the improvement ratio may go to

infinity under extreme conditions on�$ and �W .

Corollary 2 (Infinite improvement ratio)As �W → wFCFS fromaboveand
�$

�W−wFCFS
→

0 from above, the improvement ratio goes to infinity.

Proof By equation (8), we know that λ̂1 → 0 from above. By equation (12), we know

that g
(

λ∗
1
λ

)
→ 0 from above, which indicates that λ∗

1 → λ from below. Thus, by

Theorem 2, we have:

Improvement Ratio = λ∗
1

λ̂1
→ ∞.

�	
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4.3 Variant model: when the service provider can’t limit priority ticket sales

In this section, we briefly explore a variant of our model where the service provider is
unable to limit the number of priority passes sold. In other words, whenever a customer
wants to buy priority, she can buy it. As stated in Sect. 3 (see the discussion after (4)),
this implies that inequality (4) must become an equality, transforming the optimization
problem into the following form:

maximize
λ1,q,$

$ · λ1

s.t.
λ1

λ
= �FC

(
$

E [W2] − E [W1]

)
,

E [W2] � �W ,

$ ��$,
0 � q � 1.

(14)

Note that under strict priority, it is now possible that no feasible solution exists. For
instance, if the price cap is low, a large number of customers may want to purchase
priority because of the low price. Since all customers desiring priority are able to
buy it, there will be too many customers in the priority queue, which may make it
impossible to ensure that E [W2] � �W . By contrast, a solution is always attainable in
the Hybrid (or partial priority) model, as we can make E [W1] and E [W2] closer to
make priority less attractive.

Theorems similar to those in our original model also hold in this variation. The
proofs follow a similar structure (see Appendix: C), and we omit them here for
brevity.

Theorem 3 Hybrid (or partial priority) helps if and only if

�W − wFCFS

�W < ρ �FC
( �$

�W · ρ

)

. (15)

Proof See Appendix: C. �	
Theorem 4 Assume the condition (15) in Theorem 3 holds.

1. If there is no λ1 � λ̂1 satisfying θ(λ1, 1) = �$, then there is no feasible solution
under strict priority (which means Hybrid or partial priority beats strict priority
since there always exists a solution under Hybrid);

2. Otherwise, let λq=1
1 := maxλ1

{
θ(λ1, 1) =�$ | λ1 � λ̂1

}
. Then we have that

Improvement Ratio = λ∗
1

λ
q=1
1

, and Improvement Amount =
(

λ∗
1

λ
q=1
1

− 1

)

·λq=1
1

�$,
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where λ∗
1 is the unique solution of

λ

λ∗
1

· g
(

λ∗
1

λ

)
=

�$
�W − wFCFS

.

Proof See Appendix: C. �	
Importantly: the condition under which Hybrid improves revenue is the same in

both models (compare Theorem 1 with Theorem 3), but the improvement is greater
in this variant than in the original model (compare Theorem 2 with Theorem 4). The
latter point follows directly from the fact that λq=1

1 � λ̂1 by definition.

5 Numerical study with pareto disutility

To illustrate the improvement possible under partial priority, we evaluate our results
in Sect. 4 under the realistic assumption that C is distributed as a Pareto distribution.
Intuitively, a customer’s impatience factorC (themonetary cost a customer experiences
per unit waiting time) is likely related to the customer’s wealth, which has long been
known to often follow a Pareto distribution ([38, 39].) Mathematically, we assume a
Pareto type II distribution with tail parameter α where

�FC (x) =
(

1

1 + x

)α

, x � 0. (16)

As we saw in Corollary 2, the improvement ratio can approach infinity under some�$ and �W . In this section, we examine the improvement under realistic parameters.

5.1 DisneyWorld setting

The parameters that need to be decided are as follows: the parameter α for the Pareto
distribution, the service time distribution S, the total traffic/load ρ = λ

μ
and the values

of the two restrictions:�$ and �W .
In this section, we consider a particular setting of the above parameters which is

reasonably consistent with Disney World, and look at the improvement ratio under
these parameters. In Sect. 5.2, we will explore a range of parameter values and look at
the performance for that range.

Pareto parameter α: We set α = 1.5 to satisfy the 80–20 rule (also known as
Pareto Principle, saying that 80% of the wealth is owned by 20% of the population,
[38]). Under this distribution, on average people are willing to pay about $ 1.41 per
minute waiting time, which seems reasonable.

Service time distribution S: In the case of Disney, the service time S can be
approximated by a Deterministic distribution with value 1min.

Total traffic/load ρ: We set the total load ρ = 0.98. Intuitively, ρ is the fraction of
time that the server is busy. In Disney World, it is nearly impossible to see the server
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idle, given that single-pass lightning passes are only sold for the most in-demand
attractions ([22]). Under this value of load, if all customers are served in FCFS order,
the average waiting time will be about 25min, which is also reasonable.

Outer restrictions�$ and �W : We restrict the mean waiting time for class 2 cus-
tomers to be no more than �W = 30 minutes. We set the price cap to be�$ = 25 dollars
per pass per person. The price cap is consistent with what we observe in reality (see
“Lightning Lane Single Pass Pricing at Disney World” in [40]).

Under the above parameters, Theorem 2 shows that the improvement ratio is about
1.53,whichmeansHybrid increases the revenuebymore than50percent. The improve-
ment amount is about 2.43, which can be interpreted as 2.43 dollars per minute for the
attraction (about 1200 dollars per day). To have a better understanding, these numbers
mean that Hybrid will increase the number of customers buying a lightning pass for
this attraction from about 80 per day to about 120 per day. This in turn will translate
to an increase in daily revenue from selling lightning passes for the attraction from
2400 dollars to 3600.

5.2 Exploring a range of parameter settings

To get further insights, we plot the improvement ratio and the improvement amount
from Theorem 2 under more parameter combinations.

Effect of constraints on �$ and �W Fig. 4 and Fig. 5, respectively, show how the
improvement ratio is affected by the constraints on�$ and �W . All other parameters are
set to be the same as those in Sect. 5.1. As shown in the figures, the improvement ratio
is higher when the restrictions become tighter (i.e.,�$ and/or �W become smaller). This
is intuitive as when either�$ or �W is unconstrained, strict priority is optimal. On the
other hand, while the improvement ratio is monotonic, the improvement amount is
not. This is because when the restrictions are extremely tight, the service provider can
hardly make money.

Another observation is that the improvement ratio is higher under high traffic. This
is also intuitive because when the traffic is low, the regular line customers are not
suffering from a long waiting time, and thus, we do not need Hybrid to reduce the
regular line waiting time.

Notice that the improvement ratio diverges at some limit in Fig. 5. This limit is
�W → wFCFS . At this limit, λ̂1 in Theorem 2 goes to 0, accounting for the diverging
improvement ratio.

Effect of service time distributions In Sect. 5.1, we assumed that the service time
distribution is deterministic. We explore the impact of higher variance in service time
in Fig. 6.

As shown in Fig. 6,Hybrid (or partial priority) helps increase the revenue at lower
load when the service time distribution has higher variance. The intuition is as fol-
lows: With a higher variance in service time, the average waiting time for customers
increases, which makes the restriction �W relatively more restrictive. Consequently,
a smaller load is required to achieve the same improvement ratio when service time
variance is higher.
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Fig. 4 Hybrid (or partial priority) generates significant improvement under high traffic (e.g., ρ = 0.98.)
Also, the improvement ratio grows as�$ becomes smaller, but the improvement amount is not monotone. In
this set of experiments, we set α = 1.5, S = 1 (deterministic) and �W = 30.

Fig. 5 Hybrid (or partial priority) generates significant improvement under high traffic (e.g., ρ = 0.98.)
Also, the improvement ratio grows as �W becomes smaller, but the improvement amount is not monotone.
In this set of experiments, we set α = 1.5, S = 1 (deterministic) and�$ = 15

Fig. 6 As the variance of service time becomes higher, Hybrid (or partial priority) helps increase the revenue
at lower load. In this set of experiments, we set α = 1.5 and �W = 30. In (a) S follows any distribution with
mean 1 and variance 2. In (b) S follows any distribution with mean 1 and variance 5
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The Pareto parameter α We also evaluated the improvement ratio when the cus-
tomer disutility follows a more heavy-tail Pareto distribution (α = 1.1 instead of
α = 1.5). It turns out that the value of α does not affect the improvement ratio signif-
icantly (see Fig. 9 in Appendix: D compared with Fig. 4).

6 Conclusion

We consider the setting where a service provider wishes to increase revenue by lever-
aging the fact that time-sensitive customers are willing to pay for shorter waiting
times. This paper studies whether partial priority can bring in more revenue than strict
priority.

Themain insight of this paper is that, despite the flexibility of partial priority, it only
increases revenue if there are “tight” restrictions on the service provider (see Corol-
lary 1 and Remark 1). Specifically we need restrictions on both the maximum mean
waiting time �W and the maximum price,�$. Such waiting time and price restrictions,
however, are common in practice, so there are in fact situations where partial priority
is helpful.

We provide a necessary and sufficient condition on the tightness of the restrictions
needed for partial priority to increase revenue (Theorem 1). We also provide an ana-
lytical characterization of the improvement ratio and amount of Hybrid over strict
priority (Theorem 2).

The key steps in our work are Lemmas 2 and 3. Lemma 2 uses perturbation anal-
ysis to create a characterization of the optimal solution. Lemma 3 builds upon this
characterization to distill a necessary and sufficient condition for partial priority to
help improve the revenue. Theorem 1 then simplifies the condition in Lemma 3 into
closed-form explicit expressions.

We close this paper by discussing directions for future research. While our current
work focuses on a two-queue system, a natural extension would be to consider systems
with multiple queues and multiple priority levels. Although our Hybrid policy can be
easily generalized by partitioning probabilities across the multiple queues, it is not
clear how the restrictions should generalize. For example, it is at this point unclear
whether a single price cap is sufficient for partial priority to increase the revenue, or if
different price caps are needed for each priority level.Additionally, exploring scenarios
where the total arrival rate λ is variable and depends on the pricing mechanism is
complementary to our model and left for future work.

Appendix: A The number of jobs in a busy period

We present a lemma characterizing the number of jobs in a busy period. The proof is
similar to the well-known formula of the length of a busy period ([41, Chapter 27]).
We use X̃(s) = E

[
e−sX

]
to denote the Laplace transform of random variable X and

Ŷ (z) = E
[
zY

]
to denote the z-transform of random variable Y .
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Lemma 4 Let N denote the number of jobs in a busy period. Then,

Ñ (s) = e−s · S̃(λ − λÑ (s)).

Proof Let N (x) denote the number of jobs in a busy period started by a job with size
x . Then, we have the recursive formula

N (x) = 1 +
Ax∑

i=1

N (i),

where Ax is the number of jobs arriving during a period of time of length x .
Thus, we have that

˜N (x)(s) = e−s · Âx
(
Ñ (s)

)

= e−s · e−λx(1−Ñ (s)).

Integrating over x gives the proof:

Ñ (s) =
∫ ∞

0

˜N (x)(s) · fS(x)dx

=
∫ ∞

0
e−s · e−λx(1−Ñ (s)) · fS(x)dx

= e−s · S̃(λ − λÑ (s))

�	

Appendix: B Achievability region of hybrid

In this section, we mathematically quantify the achievability region of Hybrid, i.e.,
the region of all permissible waiting time pairs for queue 1 and queue 2, namely
(E [W1] ,E [W2]). The goal is to prove the region in Fig. 1.

We start in Sect.Appendix: B.1 by introducing notation and definitions. Then, in
Sects.Appendix: B.2 and Appendix: B.3, we derive regions in Fig. 1.

Appendix: B.1 Definitions and notations

The definition of the Hybrid policy is in Sect. 3.1.
Let Prio(1;2) (respectively, Prio(2;1)) denote the strict priority policy where queue

1 (respectively, queue 2) customers have priority. Note that Prio(1;2) and Prio(2;1) are
special cases of Hybrid priority, where q = 1 or q = 0.

For the purpose of this section, ourmodel is just two queues, the firstwith arrival rate
λ1 and the secondwith arrival rateλ2,where both arrival processes arePoisson.There is
a single server which serves customers from both queues in a non-preemptive fashion,
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according toHybrid(q).We assume that the service requirement of customers in queue
1 is drawn from distribution S1 and that of customers in queue 2 is drawn from S2. Let
μ1 = 1

E[S1]
, μ2 = 1

E[S2]
and ρ1 = λ1

μ1
, ρ2 = λ2

μ2
. Define λ := λ1 + λ2, ρ = ρ1 + ρ2.

Define S to be the service requirement of a customer, i.e.,

S =
{
S1 with probability λ1

λ

S2 otherwise.

We make a mild assumption that E
[
S3

]
is finite, which is a technicality which will be

needed in Lemma 6. We define E [Se] := E
[
S2

]

2E[S] to be the expected excess.

Appendix: B.2 Strict priority

Appendix: B.2.1 Expected waiting times under strict priority

The mean waiting times for queues 1 and 2, namely E [W1] and E [W2], are well-
known, under strict non-preemptive priority, see e.g., [41, p. 502]:

E [W1]
Prio(1;2) = ρE [Se]

1 − ρ1
(17)

E [W2]
Prio(1;2) = ρE [Se]

(1 − ρ1)(1 − ρ)
. (18)

Appendix: B.2.2 Achievability region of strict priority

Proposition 5 derives the achievability region for strict priority, and the blue shaded
area in Fig. 1 depicts the stability region for Prio(1;2) and Prio(2;1) graphically. As
you can see, the achievability regions for Prio(1;2) and Prio(2;1) have narrow tornado-
like shapes. The proof of Proposition 5 follows from (17) and (18). While the proof
is straightforward, the picture of the narrow tornado-shape regions demonstrates the
limitation of strict priorities and is not prominent in the literature.

Proposition 5 (Achievability Region of Strict Priority) A point (x = E [W1] , y =
E [W2]) in the waiting time plane lies in the achievability region of strict priority iff

x � yE [Se]

y + E [Se]
and y � x2

E [Se]
+ x .

Proof Suppose point (x, y) is achievable. Then,

x = E [W1]
Prio(1;2) = ρE [Se]

1 − ρ1
(19)

y = E [W2]
Prio(1;2) = ρE [Se]

(1 − ρ1)(1 − ρ)
. (20)
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Taking (19) and dividing it by (20) yields (1 − ρ) = x
y and thus

ρ = 1 − x

y
. (21)

Returning to (19), we have that 1 − ρ1 = ρE[Se]
x and thus

ρ1 = 1 − ρE [Se]

x
. (22)

If we now substitute in (21) into (22), we get

ρ1 = 1 − E [Se]

x
+ E [Se]

y
. (23)

We now use the fact that ρ1 � 0 and the fact that ρ2 = ρ − ρ1 � 0 to complete the
proof. Specifically, setting ρ1 � 0, from (23), we can equivalently write:

1 − E [Se]

x
+ E [Se]

y
� 0,

which solves to

x � yE [Se]

y + E [Se]
.

Moreover, from (21) and (23) we know that 0 � ρ2 = ρ − ρ1 is equivalent to:

0 � 1 − x

y
−

(
1 − E [Se]

x
+ E [Se]

y

)
= E [Se]

x
− x + E [Se]

y
.

Solving this gives us
y � x2/E [Se] + x .

Thus ρ1, ρ2 � 0 is equivalent to the two inequalities in the theorem. This completes
the proof. �	

Appendix: B.3 Hybrid priority

Appendix: B.3.1 Expected waiting times under hybrid

It is not known how to derive the waiting time under Hybrid(q) for a particular value
of q. What makes analyzing Hybrid(q) difficult is that the state space for Hybrid(q)

is infinite in 2 dimensions (one needs to track both the number of jobs in queue 1 and
in queue 2). While all priority systems have a 2D-infinite state space, in the case of
Prio(1;2) or Prio(2;1), we can use a “tagged job method" to derive the mean waiting
time for each queue, [41]. Unfortunately, Hybrid(q) does not lend itself to such a
tagged job analysis.
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Fig. 7 Hybrid spans the whole
segment as q ranges from 0 to 1
for a given (λ1, λ2)

Fortunately, to derive the achievability region of Hybrid it suffices to understand the
range of waiting times spanned by Hybrid(q), we derive in Proposition 6. The theorem
can be summarized by Fig. 7, which shows that Hybrid(q) spans the full range from
Prio(1;2) to Prio(2;1) as q runs from 0 to 1. Note that similar theorem holds for the
partial priority policy in [7], and Hybrid here serves as a more practical partial priority
which enjoys the same theoretical property.

Proposition 6 (Hybrid range) For any pair (λ1, λ2) such that λ1 > 0, λ2 > 0, ρ < 1,
and any 0 � q � 1, there exists an α ∈ [0, 1] s.t.:

⎡

⎣
E [W1]Hybrid(q)

E [W2]Hybrid(q)

⎤

⎦ = α

⎡

⎣
E [W1]Prio(1;2)

E [W2]Prio(1;2)

⎤

⎦ + (1 − α)

⎡

⎣
E [W1]Prio(2;1)

E [W2]Prio(2;1)

⎤

⎦ , (24)

and vice versa, i.e., for any α ∈ [0, 1] there exists a q ∈ [0, 1] such that (24) is
satisfied.

Proof The proof consists of two parts.
The first part is to show that thewaiting time pair of Hybrid(q) is a linear combina-

tionof
(
E [W1]Prio(1;2) ,E [W2]Prio(1;2)

)
and

(
E [W1]Prio(2;1) ,E [W2]Prio(2;1)

)
.

This is proved by leveraging the well-known conservation law ([37]):

constant = ρ1E [W1]
Hybrid(q) + ρ2E [W2]

Hybrid(q) . (25)

We give a short explanation of why equation (25) holds. Let N1 and N2 denote the
number of queue 1 and queue 2 customers in the system, respectively. Then,

E
[
total work in system

] = E
[
work in queue

] + E
[
remaining work in service

]

= E [N1]E [S1] + E [N2]E [S2] + ρE [Se]

= λ1E [W1]E [S1] + λ2E [W2]E [S2] + ρE [Se]

= ρ1E [W1] + ρ2E [W2] + ρE [Se] .

Since Hybrid(q) is work-conserving, we know that E
[
total work in system

]
is a con-

stant with respect to q. This gives a proof for (25). From (25), it is immediate to

123



Queueing Systems            (2026) 110:9 Page 27 of 35     9 

see that the waiting time pair under Hybrid priority lies on a straight line. Notice

that
(
E [W1]Prio(1;2) ,E [W2]Prio(1;2)

)
and

(
E [W1]Prio(2;1) ,E [W2]Prio(2;1)

)

are extreme cases of the waiting time pair under Hybrid priority, we know that any
waiting time pair under Hybrid priority must lie on this line segment.

The secondpart of the proof shows thatE [W1]Hybrid(q) is continuouswith respect
to q. We prove this by a sample path argument.

A sample pathω when implementing Hybrid(q) policy consists of two parts: (i) the
arrival sequence of customers A = ( j1, j2, ...) where each customer is specified with
the arrival time and service time; (ii) a sequence ofUnif(0, 1) variablesU = u1, u2, ...:
the i th coin flip when implementing Hybrid(q) policy is heads if ui < q and is tails
otherwise. Now we compare the average waiting time of queue 1 customers under
Hybrid(q) and Hybrid(q + ε) under the same sample path.

Note that Hybrid(q) is work conserving, thus the busy periods division is the same
as that under FCFS policy, i.e., two customers are in the same busy period under
Hybrid(q) if and only if they are in the same busy period under FCFS policy. Thus,
the busy periods division is also the same underHybrid(q) andHybrid(q + ε) policies,
and the length of a busy period follows the well-known formula ([41, Chapter 27]):

B̃(s) = S̃(s + λ − λB̃(s)), (26)

where X̃(s) is the Laplace transform of random variable X . Similarly, let N denote
the number of jobs in a busy period. By Lemma 4, its transform satisfies the following
equation:

Ñ (s) = e−s · S̃(λ − λÑ (s)). (27)

Define a coin flip to be affected if it is heads under Hybrid(q + ε) but tails under
Hybrid(q).

Note that the event that a coin flip is different under Hybrid(q) and Hybrid(q + ε)

is equivalent to the event that the corresponding Unif(0, 1) random variable lies in
(q, q + ε]. Thus, we know that a coin flip is affected with probability ε.

Now we look at a busy period B∗. Let B∗ denote its length and N∗ denote the
number of jobs in B∗. Recall that when implementing Hybrid(q), a coin is flipped
whenever the server is free and there is a job waiting. Thus, running jobs in B∗ uses
N∗ coin flips (corresponding to N∗ random variables in U). Let N∗

a denote the number
of affected coin flips among the N∗ coin flips.

Now for any customer j∗ in the busy period B∗, let Wq(∗) denote its waiting time
under Hybrid(q) policy. Note that if N∗

a = 0, all customers in B∗ are served in the
same order under Hybrid(q) and Hybrid(q + ε), which means Wq(∗) = Wq+ε(∗).
On the other hand, the customer j∗ is delayed for at most B∗ time since B∗ is the
length of the whole busy period. Thus, Wq(∗) � B∗, which indicates that

Wq(∗) − Wq+ε(∗) � B∗.
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Moreover, there are N∗ coin flips in B∗ and each of them has an independent ε

probability to be affected. Thus, we know that

P

[
N∗
a = 0 | B∗] = (1 − ε)N

∗
.

Thus, we have that

E
[
Wq(∗) − Wq+ε(∗) | B∗] � P

[
N∗
a > 0 | B∗] · B∗

=
(
1 − (1 − ε)N

∗) · B∗

� (1 − (1 − N∗ · ε)) · B∗

= ε · N∗ · B∗.

Finally, we have the inequality

E [W1]Hybrid(q) − E [W1]Hybrid(q+ε)

= E
[
Wq(∗) − Wq+ε(∗)

]

= EB∗
[
E

[
Wq(∗) − Wq+ε(∗) | B∗] · B∗

E[B]

]
Inspection Paradox

� EB∗
[
ε · N∗ · B∗ · B∗

E[B]

]
Inequality above

= ε
E[B]E

[
N · B2

]
.

Moreover, we know that

E
[
N · B2

]
� 1

3
E

[
N 3 + 2B3

]
= 1

3

(
E

[
N 3

]
+ 2E

[
B3

])
.

By equations (26), (27) and the assumption thatE
[
S3

]
exists, we know thatE

[
N 3

]

andE
[
B3

]
are finite. Thus, we have the proof thatE [W1]Hybrid(q) is continuous with

q. �	

Appendix: B.3.2 Hybrid’s achievability region is vast

We now want to argue that Hybrid’s achievability region includes the entire region
between (and including) the achievability regions of Prio(1;2) and Prio(2;1). We will
use Ahybrid to denote the union of the yellow and blue regions in Fig. 1. In Proposi-
tion 7, we will show that Hybrid covers every point in Ahybrid .

Proposition 7 (Achievability Region for Hybrid Queue) The Achievability Region for
Hybrid is Ahybrid .

Proof Note that since the waiting time for Hybrid lies on the line segment determined
by the Strict Priority policies, it is obvious that Hybrid cannot achieve any point outside
of Ahybrid .
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Fig. 8 Illustration for G, P, A, B for the proof of

We now show that the achievability region for Hybrid is all of Ahybrid . We prove
this by contradiction. Suppose there is a point G = (x0, y0) ∈ Ahybrid , shown in
Fig. 8, which is not achievable by Hybrid.

Define a set

S := {(x, y) | x � x0 & y � y0 & (x, y)is achievable for Hybrid}.

Since (0, 0) ∈ S, we know that S is not the empty set. Define P = (x1, y1) to be the
point in S which is closest to point G (we break ties arbitrarily).

By definition, there exist parameters (λ1, λ2, q) for
Hybrid that satisfy the waiting times specified by P . Now, consider the waiting

times for Prio(1;2) and Prio(2;1) under those same arrival rates. Let

A =
(
E

[
W1

∣∣∣ λ1, λ2

]Prio(1;2)
,E

[
W2

∣∣∣ λ1, λ2

]Prio(1;2))
,

B =
(
E

[
W1

∣∣∣ λ1, λ2

]Prio(2;1)
,E

[
W2

∣∣∣ λ1, λ2

]Prio(2;1))
.

Then, by Proposition 6, we know that P is on the line segment �AB.
Case 1: x1 < x0 & y1 < y0. Note that λ1 + λ2 < 1. Therefore, we can define

λ′
1 = λ1 + ε and λ′

2 = λ2,

123



    9 Page 30 of 35 Queueing Systems            (2026) 110:9 

which correspond to new points in Fig. 8: A′ and B ′. From the monotonicity of the
waiting times in Prio(1;2) and Prio(2;1), we know that both coordinates of A′ exceed
those of A; likewise, both coordinates of B ′ exceed those of B. Hence, the line segment
�A′B ′ is slightly closer to G. Thus, we can pick a node P ′ on �A′B ′, which is closer to

G than P . By Proposition 6, P ′ ∈ S, which is contradictory with how we selected P .
Case 2: x1 = x0 or y1 = y0. WLOG suppose x1 = x0. Since

E
[
W2

∣∣∣ λ1, λ2

]Prio(1;2)
> E

[
W2

∣∣∣ λ1, λ2

]Prio(2;1)
,

we know that the line �AB has a negative slope. Let the node P ′ be the node on the
line segment �AB whose y-coordinate is y1 + ε. By Proposition 6, P ′ ∈ S. But P ′ is
closer to G than P , which is contradictory with how we selected P . �	

Appendix: C Proof for variant of model from Sect. 4.3

The optimization of this model is:

maximize
λ1,q,$

$ · λ1

s.t.
λ1

λ
= �FC

(
$

E [W2] − E [W1]

)
,

E [W2] � �W ,

$ ��$,
0 � q � 1.

(28)

By exactly the same computation in Lemma 1, this optimization problem is equiv-
alent to

maximize
λ1,q

$ · λ1

s.t. $ = θ(λ1, q),

E [W2] � �W ,

$ ��$,
0 � q � 1.

(29)

In contrast to the fact that there may not be a feasible solution under strict priority,
a solution always exists under Hybrid.

Lemma 5 There always exists a solution under Hybrid (or partial priority).

Proof The proof is straightforward. For any λ1, set q such that E [W1] = E [W2] =
wFCFS . Then, θ(λ1, q) = 0 and all restrictions are satisfied. �	

An analogue of Lemma 2 is given below:
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Lemma 6 At least one of the following conditions must hold:

1. E
[
W ∗

2

] = �W , θ∗ =�$.
2. q∗ = 1.

Proof We prove by contradiction. Suppose both of them are false. Then, we have
q∗ < 1. We discuss different cases and show that all of them are contradictory.

We perturb λ∗
1 and q

∗ in all cases to prove contradictions. This approach is feasible
because λ∗

1 ∈ (0, λ) and q∗ ∈ (0, 1). To justify this, note that if λ∗
1 = 0, the revenue

would be zero which is clearly suboptimal. If λ∗
1 = λ, then θ∗ = 0 because g(1) = 0,

which also leads to zero revenue. If q∗ = 0, then θ(λ∗
1, q

∗ = 0) < 0 because
E

[
W2 | λ∗

1, q
∗ = 0

]
< wFCFS . Finally, if q∗ = 1, condition (2) above holds.

Case 1: E
[
W ∗

2

]
< �W . In this case, we increase λ∗

1 to λ′
1 = λ∗

1 + ε. Now we perturb
q∗ to q ′ such that

θ(λ′
1, q

′) = θ∗. (30)

This can be done when ε is small enough by the continuity of θ . This change of value
can still guarantee that E

[
W ′

2

]
� �W if ε is small enough. In this way, λ1 is increased

and the price is the same, which increases the revenue.
Case 2: E

[
W ∗

2

] = �W , θ∗ <�$. In this case, the revenue is

Revenue∗ = θ∗ · λ∗
1 = λ · g

(
λ∗
1

λ

)
· (
E

[
W ∗

2

] − wFCFS
)
.

Thus we can decrease λ∗
1 to λ′

1 = λ∗
1 − ε and increase q∗ to q ′ such that

E
[
W2 | λ′

1, q
′] = E

[
W ∗

2

]
. Make ε small enough such that θ(λ′

1, q
′) � �$ still holds.

In this way, the revenue is also increased because g is decreasing with respect to λ1.
Combining those two cases gives the proof. �	

Lemma 7 (When does Hybrid help?) Hybrid (or partial priority) helps increase the
revenue compared with strict priority if and only if

θ(λ̂1, q = 1) >�$. (31)

Proof We first prove that θ(λ̂1, q = 1) > �$ is a necessary condition for Hybrid to
help.

Suppose by contradiction that θ(λ̂1, q = 1) ��$ and assume that Hybrid still helps.
This is saying that we obtain the optimal revenue with q∗ < 1. By Lemma 6, we have
that E

[
W ∗

2

] = �W and θ∗ =�$. Then,

Revenue∗ = θ∗·λ∗
1 = λ·g

(
λ∗
1

λ

)
·(E [

W ∗
2

] − wFCFS
) = λ·g

(
λ∗
1

λ

)
·( �W − wFCFS

)
.

On the other hand, if we set λ1 = λ̂1 under strict priority, the revenue obtained is

Revenue′ = θ(λ̂1, q = 1) · λ̂1 = λ · g
(

λ̂1

λ

)
· ( �W − wFCFS

)
.
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Since the optimal q∗ < 1, we know that

Revenue∗ > Revenue′,

which indicates λ∗
1 < λ̂1 because g is decreasing.

But this leads to the contradiction:

�W = E
[
W2 | λ∗

1, q
∗] < E

[
W2 | λ∗

1, q = 1
]

� E
[
W2 | λ̂1, q = 1

] = �W .

We now prove that θ(λ̂1, q = 1) >�$ is a sufficient condition for Hybrid to help. In
this case, the optimal revenue under strict priority is smaller than λ̂1 ·�$ because under
strict priority, ensuring E [W2] � �W requires λ1 � λ̂1, and $ ��$ because of the price
cap.

Now we can pick a small ε > 0 and make q ′ = 1− ε. Accordingly we can increase
λ̂1 to λ′

1 such that E
[
W2 | λ′

1, q
′] = E

[
W2 | λ̂1, q = 1

]
. Pick ε small enough such

that θ(λ′
1, q

′) ��$ still holds. Now keep decreasing q ′ until θ(λ′
1, q

′) =�$. In this way,
the revenue is�$ · λ′

1 > �$ · λ̂1 which is larger than the optimal revenue under strict
priority. �	

Theorem 3 follows by simplifying the condition in Lemma 7. The simplification
is exactly the same as that in the proof of Theorem 1. We now present the proof of
Theorem 4.

Proof of Theorem 4 By Theorem 3, condition (15) is equivalent to condition (31) in
Lemma 7, which is θ(λ̂1, q = 1) >�$.

To prove the first argument, since θ(λ̂1, q = 1) > �$ and there is no λ1 � λ̂1 such
that θ(λ1, q = 1) = �$, we have that for any λ1 � λ̂1, θ(λ1, q = 1) > �$. This means
there is no solution under strict priority. Since there always exists a solution under
Hybrid (Lemma 5), we know that Hybrid beats strict priority.

To prove the second argument, we first notice that under strict priority, the optimal
revenue is λ

q=1
1 · �$, which is achieved when λ1 = λ

q=1
1 . This is because by the

continuity of θ , any λ1 such that θ(λ1, 1) � �$ must satisfy λ1 � λ
q=1
1 , and the price

is capped by�$. This gives that Revenue(q = 1) = λ
q=1
1 ·�$.

On the other hand, by Theorem 3, we know that the optimal q∗ < 1. Thus, by
Lemma 6 we know that

θ∗ =�$, E
[
W ∗

2

] = �W . (32)

This shows that the improvement ratio is

Improvement Ratio =
�$ · λ∗

1

�$ · λ
q=1
1

= λ∗
1

λ
q=1
1

.
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The expression for λ∗
1 can be solved from (32), which is equivalent to

λ

λ∗
1

· g
(

λ∗
1

λ

)
=

�$
�W − wFCFS

.

Note that the left-hand side of the equation is continuous, monotone with λ∗
1, and

ranges from ∞ to 0 when λ∗
1 takes from 0 to λ, and thus, there exists a unique solution

of λ∗
1.
Finally, the formula for the improvement amount is given by

Improvement Amount = (Improvement Ratio − 1) · Revenue(q = 1).

�	

Appendix: D Additional figures for Sect. 5

See Fig. 9.

Fig. 9 The improvement ratio does not change a lot compared with Fig. 4 when α drops. In this set of
experiments, we set α = 1.1, but keep the other parameters the same as Fig. 4, namely S = 1 (deterministic),
and �W takes on the values shown in (a) and (b)
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