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Abstract

Priority queues have long been used to increase revenue by exploiting the fact
that time-sensitive customers are willing to pay for shorter waiting times. This
fact begs the question: Can one make even more revenue by relaxing the strictness
of the priority policy? This paper answers this question under the unobserv-
able queue setting, where customers are heterogeneous in their time-sensitivity;
specifically the time-sensitivity of customers is allowed to follow an arbitrary
distribution.
In this paper we prove necessary and sufficient conditions under which partial pri-
ority can increase the revenue. Specifically, we find a surprising result: Although
partial priority offers much more flexibility than strict priority, partial prior-
ity only increases revenue if there are two additional constraints on the service
provider, one setting a maximum price and the other setting a maximum waiting
time. In the absence of either of these constraints, we prove that strict prior-
ity maximizes revenue. Finally, in situations where partial priority increases the
revenue, we analytically characterize the amount of improvement.

Keywords: Hybrid, revenue maximization, priority queue, achievability region,
bounded wait times, bounded price, time-sensitivity

1 Introduction

The concept of generating revenue by selling queue priority is well-established, par-

ticularly when serving customers with different degrees of time sensitivity (cost for

1



waiting). For example, time-sensitive customers may pay for a Pre-Check to join a pri-

ority line at the security check in airports, for expedited passport service, or expedited

manufacturing of a critical good.

In practice, priority is typically implemented as a strict priority system, where first-

class customers always receive service before all second-class customers.1 Numerous

studies have examined revenue-maximizing mechanisms and pricing strategies under

strict priority (e.g. [1–6]). These studies have shown that one can leverage the different

time sensitivity of customers to increase revenue.

This begs the question of whether one can make even more money by relaxing the

strictness of the priority. For example, imagine that class 1 customers get priority with

some probability q, say 70%, and class 2 customers get priority with probability 1´ q.

We refer to this policy as Hybridpqq (see Section 3.1 for more details). Hybridpqq falls

within the general class of partial priority policies which offer more flexibility for the

service provider.

To understand the added flexibility attainable from partial priority, we look at

Figure 1. Let E rW1s, respectively E rW2s, denote the expected waiting time of first-

class and second-class customers. Then, under strict priority, the set of all possible

expected waiting time pairs under all possible arrival rates is the blue shaded region in

Figure 1. In contrast, in yellow we see the many additional pairs that are possible under

partial priority. Following [7], we refer to all pairs (blue + yellow) as the Achievability

Region of a partial priority system.2

While many papers do not explicitly restrict themselves to strict priority (e.g.,

[9–20]), they also do not specify whether non-strict priority is actually helpful. Given

that implementing partial priority can be more challenging than implementing strict

priority, it is important to look at the following questions:

1Throughout this paper, we discuss non-preemptive policies, which means when customers are receiving
service, they cannot be interrupted by other customers.

2Previous works (e.g., [7, 8]) only talk about the achievability region for fixed arrival rates. We generalize
the definition to all possible arrival rates, and the proof is in Appendix B.
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Fig. 1: Achievability region of strict priority and partial priority.

Does the extra flexibility afforded by partial priority policies bring in more revenue? If so,

what is the amount of the increase in revenue?

Of all papers mentioned above, only two touch on the first question and none

of them answers the second. Moreover, their answers are limited to narrow settings.

Specifically, Hassin et al. [16] only demonstrate the benefit of partial priority for

revenue maximization numerically, in the special case where the service provider is

limited to an exogenous fixed price for each of the two classes. And in [10], customers

in both classes have the same time-sensitivity, although they are different in how many

times they want to use the system. See Section 2 for more details on prior works.

The goal of this paper is to answer both questions under a more general model, in

which customers’ time sensitivities are drawn from an arbitrary distribution.

1.1 Our model

We model the common situation where there is a social amenity that attracts a steady

stream of people. Everyone joins the queue, but people can choose to pay extra for

priority within the queue.

A typical example is certain popular attractions at Disney World: after entering

Disney World, customers get access to free “standby” lines for attractions. They also

have the option to purchase a priority pass called a lightning pass for an added cost.

At each attraction, customers possessing a lightning pass for the attraction enter a
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fast queue which has strict priority over the standby queue ([21]). When making their

decision to buy a lightning pass, Disney customers do not get to see the queue at each

attraction [22]. Thus customers are in an unobservable setting, where they only have

historical estimates of mean waiting times with and without priority.

Consistent with the above Disney World example, we assume that customers arrive

into the system (i.e., an attraction at Disney World) according to a Poisson process

with rate λ. The customers only differ in their time-sensitivity, modeled by their

impatience factor, C, which can follow any given distribution. The service provider

needs to serve all the customers, but it wants to leverage the fact that some customers

are more impatient to generate revenue. Thus, the service provider selects a priority

policy (not necessarily strict priority) and sells the priority (access to queue 1) for

price $. Without loss of generality, we assume the price to enter queue 2 is free: Having

a non-zero general entrance fee, as in the Disney example, adds a constant to the total

revenue and does not change the optimization problem.

Again consistent with the Disney World example, our model assumes that the

state of the queues is unobservable to the customers, meaning that the customers can

only make decisions based on the expected waiting time pair, E rW1s ,E rW2s. More

specifically, each customer chooses to buy priority or not based on the price, $, the

expected waiting time at each queue, and her own impatience factor: A customer with

impatience factor c is willing to buy priority iff

c ¨ pE rW1s ´ E rW2sq ą $.

Let λ1 denote the arrival rate of customers choosing to buy the priority (and enter

queue 1), and λ2 “ λ ´ λ1 denote the arrival rate of queue 2. The goal of the service
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provider is to maximize their revenue rate where:

Revenue rate “ λ1 ¨ $.

The model is illustrated in Figure 2, and we provide more details in Section 3.

Pay $ for 
Priority

𝜆

𝜆!

𝜆"
Free

Fig. 2: Illustration for the model.

1.2 Common restrictions within our setting

Absent any restrictions on our setting, it is straightforward to show that strict priority

is superior to partial priority. To see why, observe that queue 2 customers do not

contribute to the revenue. Thus any (partial) priority given to queue 2 customers is

wasted. Therefore, a strict priority policy is optimal.

In practice, however, there are a few common restrictions within our setting. First

of all, the service provider typically needs to ensure that the expected waiting time

for class two customers, E rW2s, does not get unbearably long. For example, Disney

seems to try to limit E rW2s ă ĎW by limiting the number of people who can buy

lightning passes within a given time-period for a given attraction (hence controlling

λ1). It is unknown whether strict priority is still optimal in maximizing revenue given

this restriction.
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Secondly, there is typically an upper limit, s$, on how much the service provider

charges. For example, in an effort to maintain its family-friendly image, Disney keeps

the price of its lighting pass under s$ “ 30 dollars per attraction, despite many cus-

tomers likely being willing to pay more (an example of the media pressure on Disney

over costs, including for lightning passes, is given in [23]). Again, it is unknown whether

strict priority is still optimal given this restriction.

The literature on pricing for queueing includes many different models. As such,

our restrictions on the maximum expected waiting time, ĎW , and the price cap, s$,

may show up in the literature in different forms. For example, in papers that assume

customers have a “utility” for service, the fact that customers’ net utility must be

positive functions as a restriction, similarly to our ĎW or s$ restrictions. In our model,

since all customers enter the system, there is no need for a utility and thus we can be

more explicit about our ĎW and s$ restrictions.

1.3 Our results and contributions

There are many reasons to believe that partial priority should increase revenue. For

example, by offering class 2 customers slightly more priority, we can lessen their waiting

time, making it easier to adhere to the ĎW restriction, thus allowing us to admit more

class 1 paying customers than under strict priority.

Surprisingly, we prove that if either of the above two restrictions (ĎW or s$) are

absent, then strict priority will maximize revenue (see Corollary 1 and Remark 1).

That is, both the restriction ĎW and the s$ are needed for partial priority to help.

Essentially, we prove a necessary and sufficient condition on the system parameters

under which revenue is improved via partial priority (Theorem 1). This effectively tells

us how tight the restrictions must be for partial priority policies to increase revenue.

Moreover, when partial priority does help increase revenue, we provide Theorem 2
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that characterizes the ratio and the absolute amount of revenue improvement. These

two results are the main contributions of our paper.

2 Prior Work

Our work generally fits within a research area called “pricing for queueing.” This is

an area where time-sensitive customers are willing to pay for priority. We start in

Section 2.1 by reviewing all the related work on pricing for queueing.

Our work also fits within an area called achievability region analysis. This is an

area where one tries to understand what waiting times are possible/impossible. We

discuss prior work on achievability region analysis in Section 2.2.

2.1 Pricing for Queueing

Research on charging people prices in exchange for shorter queueing times is not new.

The field was perhaps started by Naor in 1969, [24]. Hassin and Haviv’s highly cited

book followed in 2003 ([4]); it provides an excellent survey of this field.

The general setting is one in which customers arrive and are charged different

amounts to enter different queues, where some queues have a higher priority of being

served than others. In some works, it is assumed that the arriving customers can

observe the queue lengths when deciding which queue to join [6, 25–28] In contrast,

our paper focuses on the unobservable setting where arriving customers cannot see the

queues and need to make their decisions based only on long-run expected waiting times

(and prices). For the rest of this section, we limit our attention to the unobservable

setting.

Within the unobservable setting, several streams of work exist.

Strict Priority: the largest stream of work studies pricing under a strict priority

queueing policy, where customers in one queue always have 100% priority over those

in another queue. Papers ranging over several decades have worked on deriving the
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optimal pricing mechanism in a strict priority system, e.g., [1–3, 5, 29] While well-

studied, this stream of work is less related to our paper, and we lay more emphasis on

related work under partial priority.

Partial Priority with DPS queueing policy: Discriminatory Processor Shar-

ing (DPS) is one of the most typical partial priority policies. Under the DPS policy, the

server is time-shared between two queues in a preemptive manner, where each queue

gets some fraction of the server. The goal of most of the papers on pricing with DPS

is not to maximize revenue, but rather to study the equilibrium behavior of customers

[17, 18]). An exception is [16], in which Hassin and Haviv characterize the optimal

DPS policy to maximize the revenue when given an exogenous fixed price for each of

the two queues. They provide numerical evidence that DPS can bring more revenue

than strict priority policy without analytical proof.

It is interesting that the authors of [16] first prove theorems with respect to equi-

librium behaviors in the setting where prices are not fixed, but change to fixed prices

setting when talking about maximizing the revenue. Our paper provides an intuitive

explanation for this fact: Unless the prices are constrained, partial priority cannot

beat strict priority in maximizing the revenue. Observe that fixing the prices is more

restrictive than having a price cap.

Partial Priority with Accumulated priority policy: The accumulated prior-

ity policy was first raised and analyzed in [30]. Under the accumulated priority policy,

every customer enters the system with priority 0. While waiting, each customer accu-

mulates her priority with rate b, and customers in the high-priority classes accumulate

priority with higher rate. At each moment of time, the policy serves the customer with

the highest priority. Accumulated priority is a type of partial priority, in that low pri-

ority class customers (the ones who accumulate priority with a lower rate) may get

ahead of high priority class customers if they have waited for a longer time.
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Only recently, accumulated priority has been considered in the area of pricing for

queueing [19, 20]. However, these papers assume that the price must have a linear

relation with the accumulating rate. For example, in [19], the price for having the

accumulating rate b is also b. In this way, while interesting results are derived, this

stream of papers is less related to our paper where the price does not need to follow

a given function of the priority.

Partial Priority with unspecified queueing policy: There is also a large

stream of work which does not specify the queueing policy. Instead, their goal is to

specify what the expected waiting times would be in an optimal “price-delay menu”

that could be offered to customers. They do this by leveraging a body of research

on achievability regions (see Section 2.2 below); examples include [9–15], and Afeche

established a standard framework in [15]. However, most of these papers do not

compare with strict priority.

An exception is [10], in which the authors analytically characterize cases where

the optimal policy is strict priority, First Come First Serve (FCFS), or some partial

priority. However, in [10] customers have the same time sensitivity and only differ in

their “usage rate”; thus FCFS might be the optimal policy. In contast, in our setting

where customers can have different time sensitivity, FCFS can never be optimal, and

the comparison is more on the priority side. Moreover, another difference is that our

paper characterizes how much partial priority can increase the revenue, while the

characterization in [10] is only qualitative.

Partial Priority in other settings: The idea of a “partial priority” has come up

in other settings that do not involve pricing or queueing. Some examples include partial

priority in networks [31–34], and inventory rationing with partial priority [35, 36].

While these papers show that partial priority can be useful in many settings, they

neither consider pricing nor strategic customers.
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2.2 Achievability Region

Our paper also contributes to a relatively understudied but important research area on

achievability regions. This concept was first introduced by Coffman in 1980, [7], with

subsequent analysis by Federgruen and Groenevelt [8]. Importantly, all works in this

literature assumed a default partial priority policy proposed in [7]: the service provider

randomly selects a strict priority to implement at the beginning of each busy period.

Our work extends this area of research in two ways: (i) We analyze the achievability

region of a new policy, Hybrid; and (ii) unlike previous works, which primarily focus

on fixed arrival rates for each job type, we explore the entire space of possible arrival

rates. As a result, none of the existing papers have captured the blue “tornado”-shaped

achievability regions of strict priority that we show in Figure 1, nor the broad yellow

region spanned by partial priority policies.

3 Model

In this section, we describe our model in Section 1 in detail. We will first define the

“Hybrid” policy which is a canonical representative of partial priority policies, then

describe our model in detail. Note that although the model is stated for the Hybrid

policy, all theorems hold generally for partial priority policies.

3.1 Hybrid policy

The Hybrid policy is defined through a parameter q P r0, 1s: Whenever the server is

free and there exist customers in the queue, Hybridpqq flips a coin which comes up

heads with probability q and tails otherwise.

• If the coin comes up heads, then the server takes a customer from queue 1. If

there are no customers in queue 1, then the server takes a customer from queue 2,

assuming one exists.
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• If the coin comes up tails, then the server takes a customer from queue 2. If there are

no customers in queue 2, then the server takes a customer from queue 1, assuming

one exists.

Note that if the system is empty, Hybridpqq will wait for the next arrival, serve that

arrival, and flip its coin at that time.

Observe that Hybrid differs from the policy in [7] in that a decision is made after

each customer service, rather than only at the end of a busy period. In this way, Hybrid

offers a more fine-grained partial priority, while still enjoying the same achievability

region as the other partial priority policies.

We defer the analysis of the achievability region of Hybrid (i.e., the proof of

Figure 1) to Appendix B.

3.2 Our Model

In this section we describe our model in detail.

System: There is a single server which serves customers, who arrive according

to a Poisson process with rate λ. All customers must be served (no abandonment).

Customers are divided into two queues (queue 1 and queue 2). Customers have to

pay a price, $, to enter queue 1. Entering queue 2 is free. When the server is free, the

server serves a customer according to the Hybridpqq policy. If q “ 1, this corresponds

to strict priority.

Customers: All customers have i.i.d. service requirement (service time need)

drawn from the distribution denoted by random variable S, where the mean of S is

E rSs “ 1
µ and E

“

S3
‰

exists (while the assumption on E
“

S3
‰

is only needed for Propo-

sition 6, that proposition is key to the rest of the paper). Let ρ :“ λ
µ ă 1 denote the

total load of the system.
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Customers are time-sensitive, meaning that they are willing to pay for shorter

waiting time. Specifically, there is an impatience factor, C, associated with each cus-

tomer, where C is a random variable specified in dollars per unit waiting time. Thus a

customer with impatience C, who experiences waiting time W , will experience a cost

of C ¨ W dollars. We make a mild assumption that the tail of C, denoted by sFC p¨q, is

continuous and invertible.

We say that a customer is class 1 if she decides to buy priority (i.e., join queue 1).

Those customers who choose not to buy priority are class 2. Let λ1 denote the arrival

rate of class 1 customers and let λ2 denote the arrival rate of class 2 customers.

Waiting Times: The waiting time of a customer is the time from when the

customer arrives to the system until the customer first receives service. We use the

random variable W1 to denote the waiting time of class 1 customers. Likewise W2 will

denote the waiting time of class 2 customers.

Customers are willing to pay for priority if and if only if the expected value of the

reduction in their waiting time from buying priority is at least $, the price of joining

the priority queue. Mathematically, a customer with impatience factor C “ c is willing

to buy priority iff

cpE rW2s ´ E rW1sq ě $. (1)

We assume that there is a restriction on the maximum mean waiting time of class

2 customers; this upper limit is ĎW . Thus we are restricted to:

E rW1s ă E rW2s ď ĎW. (2)
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Price Cap: The service provider has to set the price no more than the price cap

s$, i.e.,

$ ď s$. (3)

Revenue: The revenue that the service provider brings in per unit time is defined

as

Revenue :“ λ1 ¨ $.

Decision Variables: The service provider can control $, λ1 and the parameter

q for the queueing policy Hybridpqq to maximize its revenue. The service provider

however is required to adhere to waiting times and prices that are not excessive (the

particular values of ĎW and s$ are externally provided).

Customers’ Incentive inequality: Observe that the fraction of customers who

buy priority, namely λ1

λ , is upper-bounded by the fraction who want to buy priority

(i.e., (1) holds). Mathematically this says:

λ1

λ
ď sFC

ˆ

$

E rW2s ´ E rW1s

˙

. (4)

In our model, the service provider can limit λ1 by controlling the number of priority

tickets sold. There is a slightly different model where the service provider cannot limit

λ1, i.e., whenever customers want to buy the priority, there is no way of stopping

them. In this case, the inequality (4) is an equality. We discuss this variation of our

model in Section 4.3.
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Optimization Problem: The service provider’s optimization problem can be

formulated as follows:

maximize
λ1,q,$

$ ¨ λ1

s.t.
λ1

λ
ď sFC

ˆ

$

E rW2s ´ E rW1s

˙

,

E rW2s ď ĎW,

$ ď s$,

0 ď q ď 1.

(5)

Traffic Assumptions: Let wFCFS denote the mean waiting time if all customers are

served in First-Come-First-Served order (FCFS). Mathematically, wFCFS :“ ρErSes

1´ρ .

To eliminate uninteresting cases, we make the following assumptions on ĎW :

1. ĎW ą wFCFS . If ĎW ă wFCFS , no scheduling policy can meet the requirement

E rW2s ď ĎW . If ĎW “ wFCFS , only FCFS can meet the requirement and no revenue

can be made.

2. ĎW ă wFCFS

1´ρ . Otherwise the requirement E rW2s ď ĎW is fulfilled even when all

customers go to queue 1 under strict priority. In this case, strict priority maximizes

the revenue.

4 When and How much does Hybrid help?

In this section, we solve the constrained optimization problem (5) to investigate when

and how much Hybrid (or partial priority) helps. The main goal of this section is to

prove Theorems 1 and 2, which are stated below for easy reference, but will be proved

later in the section. These theorems use notation which is explained in Table 1 and

will be defined in this section.
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Notably, a straightforward corollary of Theorem 1, Corollary 1, shows that partial

priority increases revenue only if both the s$ and ĎW restrictions exist.

Theorem 1 (When?). Hybrid (or partial priority) increases the revenue compared

with strict priority if and only if

ĎW ´ wFCFS

ĎW
ă ρ sFC

˜

s$
ĎW ¨ ρ

¸

. (6)

Theorem 2 (How much?). If the condition (6) in Theorem 1 holds, then

Improvement Ratio “
λ˚
1

xλ1

,

where λ˚
1 is the unique solution of

λ

λ˚
1

¨ g

ˆ

λ˚
1

λ

˙

“
s$

ĎW ´ wFCFS

,

and g is defined in Definition 1.

We proceed as follows: In Section 4.1 we introduce some notation to simplify the

optimization problem (5) from Section 3. Then in Section 4.2, we give the proof of

Theorem 1 and Theorem 2. Finally in Section 4.3, we discuss and present analogous

theorems for a variant of our model in which λ1 cannot be limited by the service

provider. Table 1 summarizes new notation introduced in this section.

4.1 Simplification of the optimization problem

The goal of this section is to rewrite the optimization problem (5). To do this, we

introduce some new notation. We first define a function gp¨q to be the inverse of

sFC p¨q. Under the assumption that sFC p¨q is invertible and continuous, we define the

continuous function g as follows.
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Table 1: Additional Notation Table

Notation Mathematical Definition Meaning

gpxq See Definition 1 Inverse of sFC p¨q

θpλ1, qq See Definition 2 The maximum price charged without the price cap
xλ1 µ

´

1 ´
wFCFS

ĎW

¯

The maximum arrival rate under strict priority to

ensure E rW2s ď ĎW
superscript * (e.g. λ˚

1 ) - Values in the optimal solution
superscript 1 (e.g. λ1

1) - Temporary notation for proofs
Improvement Ratio See Definition 4 The ratio of the optimal revenue under Hybrid to

that under strict priority

Definition 1 (gpxq). For any x P r0, 1s define gpxq to be

gpxq :“ sF´1
C pxq.

We next define a shorthand θpλ1, qq. For now the definition seems arbitrary, but

we will see that this term emerges in the proof of Lemma 1. Intuitively, for given λ1

and q, we can think of θpλ1, qq as the maximum price that the service provider can

charge to ensure that at least λ1

λ fraction of the customers are willing to buy priority.

In other words, θpλ1, qq is an upper bound on the price that the service provider can

charge, given λ1 and q, and given no price cap.

Definition 2 (θpλ1, qq). Define

θpλ1, qq :“ g

ˆ

λ1

λ

˙

¨
λ

λ1
pE rW2 | λ1, qs ´ wFCFSq .

Now we give the simplification of the optimization problem (5).
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Lemma 1 (Simplification of the optimization problem). The optimization problem

(5) is equivalent to the optimization problem in (7):

maximize
λ1,q

$ ¨ λ1

s.t. $ “ mintθpλ1, qq,s$u,

E rW2s ď ĎW,

1 ě q ě 0.

(7)

Proof. First, we simplify the constraint (4). By the conservation law (see [37] or proof

of Proposition 6),

λ1

λ
¨ E rW1s `

λ2

λ
¨ E rW2s “ wFCFS .

Thus we have that

E rW2s ´ E rW1s “
λ

λ1

ˆ

E rW2s ´
λ1

λ
¨ E rW1s ´

λ2

λ
¨ E rW2s

˙

“
λ

λ1
pE rW2s ´ wFCFSq .

Thus the constraint (4) can be reformulated into

λ1

λ
ď sFC

ˆ

$

E rW2s ´ E rW1s

˙

ðñ
λ1

λ
ď sFC

ˆ

λ1

λ
¨

$

E rW2s ´ wFCFS

˙

.

We now apply g on both sides. Noticing that g is a decreasing function, we have

that the constraint (4) is equivalent to

g

ˆ

λ1

λ

˙

ě
λ1

λ
¨

$

E rW2s ´ wFCFS
,
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which is further equivalent to

$ ď θpλ1, qq.

Observe that the only two constraints on $ are $ ď s$ and $ ď θpλ1, qq. Hence we

know that, given λ1, q, the revenue maximizing $ should be at most mintθpλ1, qq,s$u.

But this upper bound is actually an equality because as long as λ1 is fixed, higher price

is better. Hence we have that $ “ mintθpλ1, qq,s$u in (7). This finishes the proof.

4.2 When and how much does Hybrid (partial priority) help?

In this section, we will solve the optimization problem (7) to prove the main theorems.

Since the feasible set of this optimization problem is compact and the optimization is

finite, an optimal solution exists. Throughout this paper, we will use the superscipt ˚

to denote the optimal solution. Specifically, the triple pλ˚
1 , q

˚, $˚q denotes the optimal

values of each of the decision variables. Furthermore E rW˚
2 s :“ E rW2 | λ˚

1 , q
˚s and

θ˚ :“ θpλ˚
1 , q

˚q.

Lemma 2 provides some conditions on the optimal solution.

Lemma 2. At least one of the following conditions must hold:

1. E rW˚
2 s “ ĎW and θ˚ “ s$.

2. q˚ “ 1.

The first condition says that both the constraints on ĎW and on s$ are binding. The

second condition says that strict priority is optimal.

Proof. We prove this by contradiction. Suppose both items (1) and (2) above are false.

Then we have q˚ ă 1. We discuss different cases and show that all of them lead to

contradictions.

We perturb λ˚
1 and q˚ in all cases to prove contradictions. This approach is feasible

because λ˚
1 P p0, λq and q˚ P p0, 1q. To justify this, note that if λ˚

1 “ 0, the revenue

would be zero which is clearly suboptimal. If λ˚
1 “ λ, then θ˚ “ 0 because gp1q “
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0, which also leads to zero revenue. If q˚ “ 0, then θpλ˚
1 , q

˚ “ 0q ă 0 because

E rW2 | λ˚
1 , q

˚ “ 0s ă wFCFS . Finally, if q
˚ “ 1, condition (2) above holds.

Case 1: E rW˚
2 s ă ĎW . We increase λ˚

1 to λ1
1 “ λ˚

1 ` ϵ. Now we perturb q˚ to q1

such that θpλ1
1, q

1q “ θ˚. This can be done when ϵ is small enough by the continuity

of θ. This change of value can still guarantee that E rW 1
2s ď ĎW if ϵ is small enough.

In this way, λ1 is increased and the price is the same, which increases the revenue.

Case 2: E rW˚
2 s “ ĎW and θ˚ ą s$. In this case, the revenue is s$ ¨ λ˚

1 . Then there

exists a small enough ϵ ą 0 such that we can increase λ˚
1 to λ1

1 “ λ˚
1 ` ϵ and decrease

q˚ to q1 making E rW2 | λ1
1, q

1s “ E rW˚
2 s. We now make ϵ small enough so that

θpλ1
1, q

1q ě s$ still holds. In this way, λ1 is increased, and the price is still s$. This leads

to a larger revenue which is a contradiction.

Case 3: E rW˚
2 s “ ĎW, θ˚ ă s$. In this case, the revenue is

Revenue˚
“ θ˚ ¨ λ˚

1 “ λ ¨ g

ˆ

λ˚
1

λ

˙

¨ pE rW2s ´ wFCFSq .

Thus we can decrease λ˚
1 to λ1

1 “ λ˚
1 ´ϵ and increase q˚ to q1 such that E rW2 | λ1

1, q
1s “

E rW˚
2 s. We now make ϵ small enough such that θpλ1

1, q
1q ď s$ still holds. In this way,

the revenue is also increased because g is decreasing with respect to λ1, which is again

a contradiction.

Combining all those three cases yields the proof.

We define the notation xλ1 for the following proofs. Intuitively, xλ1 is the maximum

arrival rate under strict priority to ensure E rW2s ď ĎW . By using (18), which says

E rW2 | λ1, q “ 1s “ wFCFS

1´ρ1
, we can further get a closed form for xλ1.

Definition 3 (xλ1). Define xλ1 to be the solution of E
”

W2 | xλ1, q “ 1
ı

“ ĎW .

Mathematically,

xλ1 “ µ
´

1 ´
wFCFS

ĎW

¯

. (8)
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Now we can prove our main lemma characterizing when Hybrid helps increase the

revenue.

Lemma 3. Hybrid (or partial priority) helps increase the revenue compared with strict

priority if and only if

θpxλ1, q “ 1q ą s$. (9)

Proof. We first prove that θpxλ1, q “ 1q ą s$ is a necessary condition for Hybrid to help.

Suppose by contradiction that θpxλ1, q “ 1q ď s$ and assume that Hybrid still helps.

This is saying that we obtain the optimal revenue with q˚ ă 1. By Lemma 2, we have

that E rW˚
2 s “ ĎW and θ˚ “ s$. Then

Revenue˚
“ θ˚ ¨ λ˚

1 “ λ ¨ g

ˆ

λ˚
1

λ

˙

¨ pE rW˚
2 s ´ wFCFSq “ λ ¨ g

ˆ

λ˚
1

λ

˙

¨
`

ĎW ´ wFCFS

˘

.

On the other hand, if we set λ1 “ xλ1 under strict priority, the revenue obtained is

Revenue1
“ θpxλ1, q “ 1q ¨ xλ1 “ λ ¨ g

˜

xλ1

λ

¸

¨
`

ĎW ´ wFCFS

˘

.

Since the optimal q˚ ă 1, we know that Revenue˚
ą Revenue1, which indicates

λ˚
1 ă xλ1 because g is decreasing.

But this leads to the contradiction:

ĎW “ E rW2 | λ˚
1 , q

˚s ă E rW2 | λ˚
1 , q “ 1s ď E

”

W2 | xλ1, q “ 1
ı

“ ĎW.

We next prove that θpxλ1, q “ 1q ą s$ is a sufficient condition for Hybrid to help.

In this case, the optimal revenue under strict priority is achieved at xλ1 because any

parameters satisfying the restriction under strict priority satisfy λ1 ď xλ1 and $ ď s$.

Now we can pick a small ϵ ą 0 and set q1 “ 1 ´ ϵ. Accordingly we can increase

xλ1 to λ1
1 such that E

”

W2 | xλ1, q “ 1
ı

“ E rW2 | λ1
1, q

1s. Pick ϵ small enough such that
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θpλ1
1, q

1q ě s$ still holds. In this way, the revenue is s$ ¨ λ1
1 ą s$ ¨ xλ1 which is the optimal

revenue under strict priority.

Our main theorem characterizing the necessary and sufficient condition for Hybrid

(or partial priority) to help follows directly by simplifying the condition in Lemma 3.

Theorem 1. Hybrid (or partial priority) helps increase the revenue compared with

strict priority if and only if

ĎW ´ wFCFS

ĎW
ă ρ sFC

˜

s$
ĎW ¨ ρ

¸

. (10)

Proof. We substitute (8) into condition (9), yielding:

θpxλ1, q “ 1q “ g

˜

xλ1

λ

¸

¨
λ

xλ1

´

E
”

W2 | xλ1, q “ 1
ı

´ wFCFS

¯

“ g

˜

xλ1

λ

¸

¨
λ

xλ1

`

ĎW ´ wFCFS

˘

.

(11)

Thus condition (9) is equivalent to:

θpxλ1, q “ 1q ą s$ ðñ g

˜

xλ1

λ

¸

ą
xλ1

λ
¨

s$
ĎW ´ wFCFS

by (11)

ðñ g

˜

xλ1

λ

¸

ą
1

λ
¨ µ ¨

ĎW ´ wFCFS

ĎW
¨

s$
ĎW ´ wFCFS

ðñ g

˜

xλ1

λ

¸

ą
s$

ĎW ¨ ρ

ðñ
xλ1

λ
ă sFC

˜

s$
ĎW ¨ ρ

¸

ðñ
µp1 ´ wFCFS

ĎW
q

λ
ă sFC

˜

s$
ĎW ¨ ρ

¸

ðñ
ĎW ´ wFCFS

ĎW
ă ρ sFC

˜

s$
ĎW ¨ ρ

¸

.
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A straightforward corollary of Theorem 1 is presented below.

Corollary 1. Partial priority increases revenue only if both the s$ and ĎW restrictions

exist. In other words, partial priority policies do not increase the revenue when s$ Ñ 8

or ĎW Ñ 8.

Proof. We only need to examine whether condition (10) holds when s$ Ñ 8 or ĎW Ñ 8.

When s$ Ñ 8: The left hand side of (10) is positive and the right hand side goes

to 0.

When ĎW Ñ 8: The right hand side of (10) is smaller than 1 since both ρ ă 1 and

sFC p¨q ď 1. The left hand side goes to 1.

Remark 1. We present some intuitions for why both restrictions are necessary for

partial priority to improve revenue over strict priority.

Under strict priority, because of the ĎW restriction, the service provider must limit

the rate of sales of priority passes. The few customers who buy priority have high time-

sensitivity (tail of C), so they are willing to pay a lot, but the service provider is also

limited by the s$ restriction. This leaves money on the table (the service provider does

not get to make as much revenue as they would like). By applying partial priority, the

class 2 customers experience less waiting. Hence the service provider is allowed to sell

more priority passes (at the same price), while still adhering to the ĎW restriction, thus

making more revenue.

Pictorially, let’s revisit Figure 1. Since class 1 customers have (partial) priority

over class 2 customers, we only show the half plane where E rW1s ă E rW2s. Suppose

the optimal strict priority policy yields the waiting time pair shown in Figure 3(a) and

suppose that the optimal price already meets the constraint s$. In order to increase the

revenue, one wants to increase λ1; However that yields an infeasible waiting time pair

under strict priority (as shown in Figure 3(b)). The way that Hybrid can bring us

more money is shown in Figure 3(c): One can use Hybrid to make the solution feasible
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again while keeping the λ1 and the price the same as those in Figure 3. The question

of whether Hybrid (and partial priorities) increases revenue depends on whether or

not customers are still willing to pay s$ after transitioning to the new waiting time pair

shown in Figure 3(c).

(a) The expected waiting time pair under
the optimal strict priority policy.

(b) Increasing λ1 will increase the rev-
enue. However, the solution now violates
the restriction ĎW .

(c) Using Hybrid to make the solution
feasible again. The resulting waiting time
pair only lies in the achievability region of
Hybrid but not strict priority.

Fig. 3: Pictorial illustration for how partial priority may improve the revenue.

We see that both restrictions are important in this intuition, and without any one

of them, the intuition breaks.
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Finally, we present a theorem that demonstrates the extent to which Hybrid

outperforms strict priority. The metrics we use are the improvement ratio and the

improvement amount.

Definition 4. Let Revenuepq “ 1q denote the optimal revenue under strict priority

and Revenue˚ denote the optimal revenue under Hybrid (or partial priority). Define

the improvement ratio and the improvement amount to be

Improvement Ratio :“
Revenue˚

Revenuepq “ 1q
.

Improvement Amount :“ Revenue˚
´ Revenuepq “ 1q.

Now we prove our main theorem characterizing the improvement ratio and the

improvement amount of Hybrid.

Theorem 2 (How much?). If condition (10) in Theorem 1 holds, then

Improvement Ratio “
λ˚
1

xλ1

, and Improvement Amount “

ˆ

λ˚
1

xλ1

´ 1

˙

¨ xλ1 ¨ s$,

where λ˚
1 is the unique solution of

λ

λ˚
1

¨ g

ˆ

λ˚
1

λ

˙

“
s$

ĎW ´ wFCFS

. (12)

Proof. Condition (10) in Theorem 1 is equivalent to condition (9) in Lemma 3, which

is θpxλ1, q “ 1q ą s$. In this case, the optimal revenue under strict priority is xλ1 ¨ s$,

which is achieved when λ1 “ xλ1. The reason why no larger revenue can be achieved is

that under strict priority, λ1 ď xλ1 because of the ĎW restriction and $ ď s$. This gives

that Revenuepq “ 1q “ xλ1 ¨ s$.
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On the other hand, since condition (10) holds, by Theorem 1, we know that the

optimal q˚ ă 1. Thus by Lemma 2 we know that

θ˚ “ s$, E rW˚
2 s “ ĎW. (13)

This shows that the improvement ratio is given by:

Improvement Ratio “
s$ ¨ λ˚

1

s$ ¨ xλ1

“
λ˚
1

xλ1

.

The expression for λ˚
1 can be solved from the definition of θpλ1, qq and (13), which

is equivalent to

λ

λ˚
1

¨ g

ˆ

λ˚
1

λ

˙

“
s$

ĎW ´ wFCFS

.

Note that the left hand side of the above equation is continuous, monotonic with λ˚
1 ,

and ranges from 8 to 0 when λ˚
1 takes on values from 0 to λ. Thus there exists a

unique solution for λ˚
1 .

Finally, the formula for the improvement amount is given by

Improvement Amount “ pImprovement Ratio ´ 1q ¨ Revenuepq “ 1q.

An immediate corollary of Theorem 2 is that the improvement ratio may go to

infinity under extreme conditions on s$ and ĎW .

Corollary 2 (Infinite improvement ratio). As ĎW Ñ wFCFS from above and

s$
ĎW´wFCFS

Ñ 0 from above, the improvement ratio goes to infinity.

Proof. By equation (8), we know that xλ1 Ñ 0 from above. By equation (12), we know

that g
´

λ˚
1

λ

¯

Ñ 0 from above, which indicates that λ˚
1 Ñ λ from below. Thus by
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Theorem 2, we have:

Improvement Ratio “
λ˚
1

xλ1

Ñ 8.

4.3 Variant model: When the service provider can’t limit

priority ticket sales

In this section, we briefly explore a variant of our model where the service provider is

unable to limit the number of priority passes sold. In other words, whenever a customer

wants to buy priority, she can buy it. As stated in Section 3 (see the discussion

after (4)), this implies that inequality (4) must become an equality, transforming the

optimization problem into the following form:

maximize
λ1,q,$

$ ¨ λ1

s.t.
λ1

λ
“ sFC

ˆ

$

E rW2s ´ E rW1s

˙

,

E rW2s ď ĎW,

$ ď s$,

0 ď q ď 1.

(14)

Note that under strict priority, it is now possible that no feasible solution exists.

For instance, if the price cap is low, a large number of customers may want to purchase

priority because of the low price. Since all customers desiring priority are able to

buy it, there will be too many customers in the priority queue, which may make it

impossible to ensure that E rW2s ď ĎW . By contrast, a solution is always attainable in

the Hybrid (or partial priority) model, as we can make E rW1s and E rW2s closer to

make priority less attractive.
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Theorems similar to those in our original model also hold in this variation. The

proofs follow a similar structure (see Appendix C), and we omit them here for brevity.

Theorem 3. Hybrid (or partial priority) helps if and only if

ĎW ´ wFCFS

ĎW
ă ρ sFC

˜

s$
ĎW ¨ ρ

¸

. (15)

Proof. See Appendix C.

Theorem 4. Assume the condition (15) in Theorem 3 holds.

1. If there is no λ1 ď xλ1 satisfying θpλ1, 1q “ s$, then there is no feasible solution

under strict priority (which means Hybrid or partial priority beats strict priority

since there always exists a solution under Hybrid);

2. Otherwise, let λq“1
1 :“ maxλ1

!

θpλ1, 1q “ s$ | λ1 ď xλ1

)

. Then we have that

Improvement Ratio “
λ˚
1

λq“1
1

, and Improvement Amount “

˜

λ˚
1

λq“1
1

´ 1

¸

¨λq“1
1

s$,

where λ˚
1 is the unique solution of

λ

λ˚
1

¨ g

ˆ

λ˚
1

λ

˙

“
s$

ĎW ´ wFCFS

.

Proof. See Appendix C.

Importantly: the condition under which Hybrid improves revenue is the same in

both models (compare Theorem 1 with Theorem 3), but the improvement is greater

in this variant than in the original model (compare Theorem 2 with Theorem 4). The

latter point follows directly from the fact that λq“1
1 ď xλ1 by definition.
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5 Numerical Study with Pareto Disutility

To illustrate the improvement possible under partial priority, we evaluate our results

in Section 4 under the realistic assumption that C is distributed as a Pareto distri-

bution. Intuitively, a customer’s impatience factor C (the monetary cost a customer

experiences per unit waiting time) is likely related to the customer’s wealth, which

has long been known to often follow a Pareto distribution ([38, 39].) Mathematically,

we assume a Pareto type II distribution with tail parameter α where

sFC pxq “

ˆ

1

1 ` x

˙α

, x ě 0. (16)

As we saw in in Corollary 2, the improvement ratio can approach infinity under

some s$ and ĎW . In this section, we examine the improvement under realistic parameters.

5.1 Disney World setting

The parameters that need to be decided are as follows: the parameter α for the Pareto

distribution, the service time distribution S, the total traffic/load ρ “ λ
µ and the

values of the two restrictions: s$ and ĎW .

In this section, we consider a particular setting of the above parameters which is

reasonably consistent with Disney World, and look at the improvement ratio under

these parameters. In Section 5.2, we will explore a range of parameter values and look

at the performance for that range.

Pareto parameter α: We set α “ 1.5 to satisfy the 80-20 rule (also known as

Pareto Principle, saying that 80% of the wealth is owned by 20% of the population,

[38]). Under this distribution, on average people are willing to pay about $ 1.41 per

minute waiting time, which seems reasonable.

Service time distribution S: In the case of Disney, the service time S can be

approximated by a Deterministic distribution with value 1 minute.
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Total traffic/load ρ: We set the total load ρ “ 0.98. Intuitively, ρ is the fraction

of time that the server is busy. In Disney World, it is nearly impossible to see the

server idle, given that single-pass lightning passes are only sold for the most in-demand

attractions ([22]). Under this value of load, if all customers are served in FCFS order,

the average waiting time will be about 25 minutes, which is also reasonable.

Outer restrictions s$ and ĎW : We restrict the mean waiting time for class 2

customers to be no more than ĎW “ 30 minutes. We set the price cap to be s$ “ 25

dollars per pass per person. The price cap is consistent with what we observe in reality

(see “Lightning Lane Single Pass Pricing at Disney World” in [40]).

Under the above parameters, Theorem 2 shows that the improvement ratio is

about 1.53, which means Hybrid increases the revenue by more than 50 percent. The

improvement amount is about 2.43, which can be interpreted as 2.43 dollars per minute

for the attraction (about 1200 dollars per day). To have a better understanding, these

numbers mean that Hybrid will increase the number of customers buying a lightning

pass for this attraction from about 80 per day to about 120 per day. This in turn will

translate to an increase in daily revenue from selling lightning passes for the attraction

from 2400 dollars to 3600.

5.2 Exploring a range of parameter settings

To get further insights, we plot the improvement ratio and the improvement amount

from Theorem 2 under more parameter combinations.

Effect of constraints on s$ and ĎW : Figure 4 and Figure 5, respectively, show how

the improvement ratio is affected by the constraints on s$ and ĎW . All other parameters

are set to be the same as those in Section 5.1. As shown in the figures, the improvement

ratio is higher when the restrictions become tighter (i.e., s$ and/or ĎW become smaller).

This is intuitive as when either s$ or ĎW is unconstrained, strict priority is optimal. On

the other hand, while the improvement ratio is monotonic, the improvement amount
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is not. This is because when the restrictions are extremely tight, the service provider

can hardly make money.

Another observation is that the improvement ratio is higher under high traffic.

This is also intuitive because when the traffic is low, the regular line customers are not

suffering from a long waiting time, thus we do not need Hybrid to reduce the regular

line waiting time.

Notice that the improvement ratio diverges at some limit in Figure 5. This limit is

ĎW Ñ wFCFS . At this limit, xλ1 in Theorem 2 goes to 0, accounting for the diverging

improvement ratio.
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(a) The improvement ratio.
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(b) The improvement amount.

Fig. 4: Hybrid (or partial priority) generates significant improvement under high
traffic (e.g., ρ “ 0.98.) Also, the improvement ratio grows as s$ becomes smaller, but
the improvement amount is not monotone. In this set of experiments, we set α “ 1.5,
S “ 1 (deterministic) and ĎW “ 30.

Effect of Service Time Distributions: In Section 5.1, we assumed that the

service time distribution is deterministic. We explore the impact of higher variance in

service time in Figure 6.

As shown in Figure 6, Hybrid (or partial priority) helps increase the revenue at

lower load when the service time distribution has higher variance. The intuition is as

follows: With a higher variance in service time, the average waiting time for customers

increases, which makes the restriction ĎW relatively more restrictive. Consequently a
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(a) The improvement ratio.

ρ=0.98

ρ=0.97

ρ=0.95

30 40 50 60 70 80
0.0

0.5

1.0

1.5

2.0

2.5

Max Wait W
__

Im
pr
ov
em
en
tA
m
ou
nt

(b) The improvement amount.

Fig. 5: Hybrid (or partial priority) generates significant improvement under high
traffic (e.g., ρ “ 0.98.) Also, the improvement ratio grows as ĎW becomes smaller, but
the improvement amount is not monotone. In this set of experiments, we set α “ 1.5,
S “ 1 (deterministic) and s$ “ 15.

smaller load is required to achieve the same improvement ratio when service time

variance is higher.
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(a) Variance of service time is 2.
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(b) Variance of service time is 5.

Fig. 6: As the variance of service time becomes higher, Hybrid (or partial priority)
helps increase the revenue at lower load. In this set of experiments, we set α “ 1.5
and ĎW “ 30. In (a) S follows any distribution with mean 1 and variance 2. In (b) S
follows any distribution with mean 1 and variance 5.

The Pareto parameter α: We also evaluated the improvement ratio when the

customer disutility follows a more heavy-tail Pareto distribution (α “ 1.1 instead of

α “ 1.5). It turns out that the value of α does not affect the improvement ratio

significantly (see Figure 9 in Appendix D compared with Figure 4).
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6 Conclusion

We consider the setting where a service provider wishes to increase revenue by lever-

aging the fact that time-sensitive customers are willing to pay for shorter waiting

times. This paper studies whether partial priority can bring in more revenue than

strict priority.

The main insight of this paper is that, despite the flexibility of partial priority,

it only increases revenue if there are “tight” restrictions on the service provider (see

Corollary 1 and Remark 1). Specifically we need restrictions on both the maximum

mean waiting time ĎW and the maximum price, s$. Such waiting time and price restric-

tions, however, are common in practice, so there are in fact situations where partial

priority is helpful.

We provide a necessary and sufficient condition on the tightness of the restrictions

needed for partial priority to increase revenue (Theorem 1). We also provide an ana-

lytical characterization of the improvement ratio and amount of Hybrid over strict

priority (Theorem 2).

The key steps in our work are Lemmas 2 and 3. Lemma 2 uses perturbation anal-

ysis to create a characterization of the optimal solution. Lemma 3 builds upon this

characterization to distill a necessary and sufficient condition for partial priority to

help improve the revenue. Theorem 1 then simplifies the condition in Lemma 3 into

closed-form explicit expressions.

We close this paper by discussing directions for future research. While our current

work focuses on a two-queue system, a natural extension would be to consider systems

with multiple queues and multiple priority levels. Although our Hybrid policy can be

easily generalized by partitioning probabilities across the multiple queues, it is not

clear how the restrictions should generalize. For example, it is at this point unclear

whether a single price cap is sufficient for partial priority to increase the revenue, or if

different price caps are needed for each priority level. Additionally, exploring scenarios

32



where the total arrival rate λ is variable and depends on the pricing mechanism is

complementary to our model and left for future work.
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A The number of jobs in a busy period

We present a lemma characterizing the number of jobs in a busy period. The proof is

similar to the well-known formula of the length of a busy period ([41, Chapter 27]).

We use rXpsq “ E
“

e´sX
‰

to denote the Laplace transform of random variable X and

pY pzq “ E
“

zY
‰

to denote the z-transform of random variable Y .

Lemma 4. Let N denote the number of jobs in a busy period. Then

rNpsq “ e´s ¨ rSpλ ´ λ rNpsqq.

Proof. Let Npxq denote the number of jobs in a busy period started by a job with size

x. Then we have the recursive formula

Npxq “ 1 `

Ax
ÿ

i“1

N piq,

where Ax is the number of jobs arriving during a period of time of length x.
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Thus we have that

ĆNpxqpsq “ e´s ¨ xAx

´

rNpsq

¯

“ e´s ¨ e´λxp1´ĂNpsqq.

Integrating over x gives the proof:

rNpsq “

ż 8

0

ĆNpxqpsq ¨ fSpxqdx

“

ż 8

0

e´s ¨ e´λxp1´ĂNpsqq ¨ fSpxqdx

“ e´s ¨ rSpλ ´ λ rNpsqq

B Achievability Region of Hybrid

In this section we mathematically quantify the achievability region of Hybrid, i.e.,

the region of all permissible waiting time pairs for queue 1 and queue 2, namely

pE rW1s ,E rW2sq. The goal is to prove the region in Figure 1.

We start in Section B.1 by introducing notation and definitions. Then in

Section B.2 and Section B.3, we derive regions in Figure 1.

B.1 Definitions and Notations

The definition of the Hybrid policy is in Section 3.1.

Let Prio(1;2) (respectively, Prio(2;1)) denote the strict priority policy where queue

1 (respectively, queue 2) customers have priority. Note that Prio(1;2) and Prio(2;1)

are special cases of Hybrid priority, where q “ 1 or q “ 0.
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For the purpose of this section, our model is just two queues, the first with arrival

rate λ1 and the second with arrival rate λ2, where both arrival processes are Poisson.

There is a single server which serves customers from both queues in a non-preemptive

fashion, according to Hybridpqq. We assume that the service requirement of customers

in queue 1 is drawn from distribution S1 and that of customers in queue 2 is drawn from

S2. Let µ1 “ 1
ErS1s

, µ2 “ 1
ErS2s

and ρ1 “ λ1

µ1
, ρ2 “ λ2

µ2
. Define λ :“ λ1 `λ2, ρ “ ρ1 `ρ2.

Define S to be the service requirement of a customer, i.e.,

S “

$

’

’

&

’

’

%

S1 with probability λ1

λ

S2 otherwise.

We make a mild assumption that E
“

S3
‰

is finite, which is a technicality which will be

needed in Lemma 6. We define E rSes :“
ErS2s
2ErSs

to be the expected excess.

B.2 Strict Priority

B.2.1 Expected Waiting Times under Strict Priority:

The mean waiting times for queues 1 and 2, namely E rW1s and E rW2s, are well-

known, under strict non-preemptive priority, see e.g. [41, p. 502]:

E rW1s
Priop1;2q

“
ρE rSes

1 ´ ρ1
(17)

E rW2s
Priop1;2q

“
ρE rSes

p1 ´ ρ1qp1 ´ ρq
. (18)

B.2.2 Achievability Region of Strict Priority:

Proposition 5 derives the achievability region for strict priority, and the blue shaded

area in Figure 1 depicts the stability region for Prio(1;2) and Prio(2;1) graphically. As
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you can see, the achievability regions for Prio(1;2) and Prio(2;1) have narrow tornado-

like shapes. The proof of Proposition 5 follows from (17) and (18). While the proof

is straightforward, the picture of the narrow tornado-shape regions demonstrates the

limitation of strict priorities, and is not prominent in the literature.

Proposition 5 (Achievability Region of Strict Priority). A point px “ E rW1s , y “

E rW2sq in the waiting time plane lies in the achievability region of strict priority iff

x ě
yE rSes

y ` E rSes
and y ě

x2

E rSes
` x.

Proof. Suppose point px, yq is achievable. then

x “ E rW1s
Priop1;2q

“
ρE rSes

1 ´ ρ1
(19)

y “ E rW2s
Priop1;2q

“
ρE rSes

p1 ´ ρ1qp1 ´ ρq
. (20)

Taking (19) and dividing it by (20) yields p1 ´ ρq “ x
y and thus

ρ “ 1 ´
x

y
. (21)

Returning to (19), we have that 1 ´ ρ1 “
ρErSes

x and thus

ρ1 “ 1 ´
ρE rSes

x
. (22)

If we now substitute in (21) into (22), we get:

ρ1 “ 1 ´
E rSes

x
`

E rSes

y
. (23)
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We now use the fact that ρ1 ě 0 and the fact that ρ2 “ ρ ´ ρ1 ě 0 to complete

the proof. Specifically, setting ρ1 ě 0, from (23) we can equivalently write:

1 ´
E rSes

x
`

E rSes

y
ě 0,

which solves to

x ě
yE rSes

y ` E rSes
.

Moreover, from (21) and (23) we know that 0 ď ρ2 “ ρ ´ ρ1 is equivalent to:

0 ď 1 ´
x

y
´

ˆ

1 ´
E rSes

x
`

E rSes

y

˙

“
E rSes

x
´

x ` E rSes

y
.

Solving this gives us

y ě x2{E rSes ` x.

Thus ρ1, ρ2 ě 0 is equivalent to the two inequalities in the theorem. This completes

the proof.

B.3 Hybrid Priority

B.3.1 Expected Waiting Times under Hybrid

It is not known how to derive the waiting time under Hybridpqq for a particular value

of q. What makes analyzing Hybridpqq difficult is that the state space for Hybridpqq

is infinite in 2 dimensions (one needs to track both the number of jobs in queue 1 and

in queue 2). While all priority systems have a 2D-infinite state space, in the case of

Prio(1;2) or Prio(2;1), we can use a “tagged job method” to derive the mean waiting

time for each queue, [41]. Unfortunately, Hybridpqq does not lend itself to such a tagged

job analysis.

Fortunately, to derive the achievability region of Hybrid it suffices to understand

the range of waiting times spanned by Hybridpqq, and this we derive in Proposition 6
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below. The theorem can be summarized by Figure 7, which shows that Hybridpqq

spans the full range from Prio(1;2) to Prio(2;1) as q runs from 0 to 1. Note that similar

theorem holds for the partial priority policy in [7], and Hybrid here serves as a more

practical partial priority which enjoys the same theoretical property.

PRIO(1;2)

PRIO(2;1)

𝐸[𝑊!]

𝐸[𝑊"]

Hybrid

Fig. 7: Hybrid spans the whole segment as q ranges from 0 to 1 for a given pλ1, λ2q.

Proposition 6 (Hybrid range). For any pair pλ1, λ2q such that λ1 ą 0, λ2 ą 0, ρ ă 1,

and any 0 ď q ď 1, there exists an α P r0, 1s s.t.:

»

—

—

—

—

–

E rW1s
Hybridpqq

E rW2s
Hybridpqq

fi

ffi

ffi

ffi

ffi

fl

“ α

»

—

—

—

—

–

E rW1s
Prio(1;2)

E rW2s
Prio(1;2)

fi

ffi

ffi

ffi

ffi

fl

` p1 ´ αq

»

—

—

—

—

–

E rW1s
Prio(2;1)

E rW2s
Prio(2;1)

fi

ffi

ffi

ffi

ffi

fl

, (24)

and vice versa, i.e., for any α P r0, 1s there exists a q P r0, 1s such that (24) is satisfied.

Proof. The proof consists of two parts.

The first part is to show that the waiting time pair of Hybridpqq

is a linear combination of

ˆ

E rW1s
Prio(1;2)

,E rW2s
Prio(1;2)

˙

and
ˆ

E rW1s
Prio(2;1)

,E rW2s
Prio(2;1)

˙

. This is proved by leveraging the well-known

conservation law ([37]):

constant “ ρ1E rW1s
Hybridpqq

` ρ2E rW2s
Hybridpqq

. (25)

42



We give a short explanation of why equation (25) holds. Let N1 and N2 denote the

number of queue 1 and queue 2 customers in the system, respectively. Then

E rtotal work in systems “ E rwork in queues ` E rremaining work in services

“ E rN1sE rS1s ` E rN2sE rS2s ` ρE rSes

“ λ1E rW1sE rS1s ` λ2E rW2sE rS2s ` ρE rSes

“ ρ1E rW1s ` ρ2E rW2s ` ρE rSes .

Since Hybridpqq is work-conserving, we know that E rtotal work in systems is a con-

stant with respect to q. This gives a proof for (25). From (25) it is immediate to

see that the waiting time pair under Hybrid priority lies on a straight line. Notice

that

ˆ

E rW1s
Prio(1;2)

,E rW2s
Prio(1;2)

˙

and

ˆ

E rW1s
Prio(2;1)

,E rW2s
Prio(2;1)

˙

are extreme cases of the waiting time pair under Hybrid priority, we know that any

waiting time pair under Hybrid priority must lie on this line segment.

The second part of the proof shows that E rW1s
Hybridpqq

is continuous with

respect to q. We prove this by a sample path argument.

A sample path ω when implementing Hybridpqq policy consists of two parts: (i) the

arrival sequence of customers A “ pj1, j2, ...q where each customer is specified with

the arrival time and service time; (ii) a sequence of Unifp0, 1q variables U “ u1, u2, ...:

the ith coin flip when implementing Hybridpqq policy is heads if ui ă q and is tails

otherwise. Now we compare the average waiting time of queue 1 customers under

Hybridpqq and Hybridpq ` ϵq under the same sample path.

Note that Hybridpqq is work conserving, thus the busy periods division is the same

as that under FCFS policy, i.e., two customers are in the same busy period under

Hybridpqq if and only if they are in the same busy period under FCFS policy. Thus

the busy periods division is also the same under Hybridpqq and Hybridpq ` ϵq policies,
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and the length of a busy period follows the well known formula ([41, Chapter 27]):

rBpsq “ rSps ` λ ´ λ rBpsqq, (26)

where rXpsq is the Laplace transform of random variable X. Similarly, let N denote

the number of jobs in a busy period. By Lemma 4, its transform satisfies the following

equation:

rNpsq “ e´s ¨ rSpλ ´ λ rNpsqq. (27)

Define a coin flip to be affected if it is heads under Hybridpq ` ϵq but tails under

Hybridpqq. Note that the event that a coin flip is different under Hybridpqq and

Hybridpq ` ϵq is equivalent to the event that the corresponding Unifp0, 1q random

variable lies in pq, q ` ϵs. Thus we know that a coin flip is affected with probability ϵ.

Now we look at a busy period B˚. Let B˚ denote its length and N˚ denote the

number of jobs in B˚. Recall that when implementing Hybridpqq, a coin is flipped

whenever the server is free and there is a job waiting. Thus running jobs in B˚ uses N˚

coin flips (corresponding to N˚ random variables in U). Let N˚
a denote the number

of affected coin flips among the N˚ coin flips.

Now for any customer j˚ in the busy period B˚, let W qp˚q denote its waiting time

under Hybridpqq policy. Note that if N˚
a “ 0, all customers in B˚ are served in the

same order under Hybridpqq and Hybridpq ` ϵq, which means W qp˚q “ W q`ϵp˚q. On

the other hand, the customer j˚ is delayed for at most B˚ time since B˚ is the length

of the whole busy period, Thus W qp˚q ď B˚, which indicates that

W qp˚q ´ W q`ϵp˚q ď B˚.
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Moreover, there are N˚ coin flips in B˚ and each of them has an independent ϵ

probability to be affected. Thus we know that

P rN˚
a “ 0 | B˚s “ p1 ´ ϵqN

˚

.

Thus we have that

E
“

W qp˚q ´ W q`ϵp˚q | B˚
‰

ď P rN˚
a ą 0 | B˚s ¨ B˚

“

´

1 ´ p1 ´ ϵqN
˚

¯

¨ B˚

ď p1 ´ p1 ´ N˚ ¨ ϵqq ¨ B˚

“ ϵ ¨ N˚ ¨ B˚.

Finally, we have the inequality

E rW1s
Hybridpqq

´ E rW1s
Hybridpq`ϵq

“ E
“

W qp˚q ´ W q`ϵp˚q
‰

“ EB˚

„

E
“

W qp˚q ´ W q`ϵp˚q | B˚
‰

¨
B˚

E rBs

ȷ

Inspection Paradox

ď EB˚

„

ϵ ¨ N˚ ¨ B˚ ¨
B˚

E rBs

ȷ

Inequality above

“
ϵ

E rBs
E

“

N ¨ B2
‰

.

Moreover, we know that

E
“

N ¨ B2
‰

ď
1

3
E

“

N3 ` 2B3
‰

“
1

3

`

E
“

N3
‰

` 2E
“

B3
‰˘

.
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By equations (26), (27) and the assumption that E
“

S3
‰

exists, we know that

E
“

N3
‰

and E
“

B3
‰

are finite. Thus we have the proof that E rW1s
Hybridpqq

is

continuous with q.

B.3.2 Hybrid’s achievability region is vast

We now want to argue that Hybrid’s achievability region includes the entire region

between (and including) the achievability regions of Prio(1;2) and Prio(2;1). We will

use Ahybrid to denote the union of the yellow and blue regions in Figure 1. In

Proposition 7, we will show that Hybrid covers every point in Ahybrid.

Proposition 7 (Achievability Region for Hybrid Queue). The Achievability Region

for Hybrid is Ahybrid.

Proof. Note that since the waiting time for Hybrid lies on the line segment determined

by the Strict Priority policies, it is obvious that Hybrid cannot achieve any point

outside of Ahybrid.

We now show that the achievability region for Hybrid is all of Ahybrid. We prove

this by contradiction. Suppose there is a point G “ px0, y0q P Ahybrid, shown in

Figure 8, which is not achievable by Hybrid. Define a set

S :“ tpx, yq | x ď x0 & y ď y0 & px, yq is achievable for Hybridu.

Since p0, 0q P S, we know that S is not the empty set. Define P “ px1, y1q to be the

point in S which is closest to point G (we break ties arbitrarily).

By definition, there exist parameters pλ1, λ2, qq for Hybrid that satisfy the waiting

times specified by P . Now, consider the waiting times for Prio(1;2) and Prio(2;1) under

those same arrival rates. Let

A “

ˆ

E
”

W1

ˇ

ˇ

ˇ
λ1, λ2

ıPriop1;2q

,E
”

W2

ˇ

ˇ

ˇ
λ1, λ2

ıPriop1;2q
˙

,
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B “

ˆ

E
”

W1

ˇ

ˇ

ˇ
λ1, λ2

ıPriop2;1q

,E
”

W2

ˇ

ˇ

ˇ
λ1, λ2

ıPriop2;1q
˙

.

Then, by Proposition 6, we know that P is on the line segment ĚAB.

PRIO(1;2)

PRIO(2;1)

𝐸[𝑊!]

𝐸[𝑊"]
Hybrid

G
A

B

P

A’

B’

Fig. 8: Illustration for G,P,A,B for the proof of .

Case 1: x1 ă x0 & y1 ă y0. Note that λ1 ` λ2 ă 1. Therefore we can define

λ1
1 “ λ1 ` ϵ and λ1

2 “ λ2,

which correspond to new points in Figure 8: A1 and B1. From the monotonicity of the

waiting times in Prio(1;2) and Prio(2;1), we know that both coordinates of A1 exceed

those of A; likewise, both coordinates of B1 exceed those of B. Hence, the line segment

ĘA1B1 is slightly closer to G. Thus we can pick a node P 1 on ĘA1B1 which is closer to G

than P . By Proposition 6, P 1 P S, which is contradictory with how we selected P .

Case 2: x1 “ x0 or y1 “ y0. WLOG suppose x1 “ x0. Since

E
”

W2

ˇ

ˇ

ˇ
λ1, λ2

ıPriop1;2q

ą E
”

W2

ˇ

ˇ

ˇ
λ1, λ2

ıPriop2;1q

,

we know that the line ĚAB has a negative slope. Let the node P 1 be the node on the

line segment ĚAB whose y-coordinate is y1 ` ϵ. By Proposition 6, P 1 P S. But P 1 is

closer to G than P , which is contradictory with how we selected P .
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C Proof for Variant of Model from Section 4.3

The optimization of this model is:

maximize
λ1,q,$

$ ¨ λ1

s.t.
λ1

λ
“ sFC

ˆ

$

E rW2s ´ E rW1s

˙

,

E rW2s ď ĎW,

$ ď s$,

0 ď q ď 1.

(28)

By exactly the same computation in Lemma 1, this optimization problem is

equivalent to

maximize
λ1,q

$ ¨ λ1

s.t. $ “ θpλ1, qq,

E rW2s ď ĎW,

$ ď s$,

0 ď q ď 1.

(29)

In contrast to the fact that there may not be a feasible solution under strict priority,

a solution always exists under Hybrid.

Lemma 5. There always exists a solution under Hybrid (or partial priority).

Proof. The proof is straightforward. For any λ1, set q such that E rW1s “ E rW2s “

wFCFS . Then θpλ1, qq “ 0 and all restrictions are satisfied.

An analogue of Lemma 2 is given below:

Lemma 6. At least one of the following conditions must hold:

1. E rW˚
2 s “ ĎW, θ˚ “ s$.
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2. q˚ “ 1.

Proof. We prove by contradiction. Suppose both of them are false. Then we have

q˚ ă 1. We discuss different cases and show that all of them are contradictory.

We perturb λ˚
1 and q˚ in all cases to prove contradictions. This approach is feasible

because λ˚
1 P p0, λq and q˚ P p0, 1q. To justify this, note that if λ˚

1 “ 0, the revenue

would be zero which is clearly suboptimal. If λ˚
1 “ λ, then θ˚ “ 0 because gp1q “

0, which also leads to zero revenue. If q˚ “ 0, then θpλ˚
1 , q

˚ “ 0q ă 0 because

E rW2 | λ˚
1 , q

˚ “ 0s ă wFCFS . Finally, if q
˚ “ 1, condition (2) above holds.

Case 1: E rW˚
2 s ă ĎW . In this case, we increase λ˚

1 to λ1
1 “ λ˚

1 `ϵ. Now we perturb

q˚ to q1 such that

θpλ1
1, q

1q “ θ˚. (30)

This can be done when ϵ is small enough by the continuity of θ. This change of value

can still guarantee that E rW 1
2s ď ĎW if ϵ is small enough. In this way, λ1 is increased

and the price is the same, which increases the revenue.

Case 2: E rW˚
2 s “ ĎW, θ˚ ă s$. In this case, the revenue is

Revenue˚
“ θ˚ ¨ λ˚

1 “ λ ¨ g

ˆ

λ˚
1

λ

˙

¨ pE rW˚
2 s ´ wFCFSq .

Thus we can decrease λ˚
1 to λ1

1 “ λ˚
1 ´ϵ and increase q˚ to q1 such that E rW2 | λ1

1, q
1s “

E rW˚
2 s. Make ϵ small enough such that θpλ1

1, q
1q ď s$ still holds. In this way, the

revenue is also increased because g is decreasing with respect to λ1.

Combining those two cases gives the proof.

Lemma 7 (When does Hybrid help?). Hybrid (or partial priority) helps increase the

revenue compared with strict priority if and only if

θpxλ1, q “ 1q ą s$. (31)
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Proof. We first prove that θpxλ1, q “ 1q ą s$ is a necessary condition for Hybrid to help.

Suppose by contradiction that θpxλ1, q “ 1q ď s$ and assume that Hybrid still helps.

This is saying that we obtain the optimal revenue with q˚ ă 1. By Lemma 6, we have

that E rW˚
2 s “ ĎW and θ˚ “ s$. Then

Revenue˚
“ θ˚ ¨ λ˚

1 “ λ ¨ g

ˆ

λ˚
1

λ

˙

¨ pE rW˚
2 s ´ wFCFSq “ λ ¨ g

ˆ

λ˚
1

λ

˙

¨
`

ĎW ´ wFCFS

˘

.

On the other hand, if we set λ1 “ xλ1 under strict priority, the revenue obtained is

Revenue1
“ θpxλ1, q “ 1q ¨ xλ1 “ λ ¨ g

˜

xλ1

λ

¸

¨
`

ĎW ´ wFCFS

˘

.

Since the optimal q˚ ă 1, we know that

Revenue˚
ą Revenue1,

which indicates λ˚
1 ă xλ1 because g is decreasing.

But this leads to the contradiction:

ĎW “ E rW2 | λ˚
1 , q

˚s ă E rW2 | λ˚
1 , q “ 1s ď E

”

W2 | xλ1, q “ 1
ı

“ ĎW.

We now prove that θpxλ1, q “ 1q ą s$ is a sufficient condition for Hybrid to help. In

this case, the optimal revenue under strict priority is smaller than xλ1 ¨s$ because under

strict priority, ensuring E rW2s ď ĎW requires λ1 ď xλ1, and $ ď s$ because of the price

cap.

Now we can pick a small ϵ ą 0 and make q1 “ 1 ´ ϵ. Accordingly we can increase

xλ1 to λ1
1 such that E rW2 | λ1

1, q
1s “ E

”

W2 | xλ1, q “ 1
ı

. Pick ϵ small enough such

that θpλ1
1, q

1q ě s$ still holds. Now keep decreasing q1 until θpλ1
1, q

1q “ s$. In this way,
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the revenue is s$ ¨ λ1
1 ą s$ ¨ xλ1 which is larger than the optimal revenue under strict

priority.

Theorem 3 follows by simplifying the condition in Lemma 7. The simplification

is exactly the same as that in the proof of Thereom 1. We now present the proof of

Theorem 4.

Proof of Theorem 4. By Theorem 3, condition (15) is equivalent to condition (31) in

Lemma 7, which is θpxλ1, q “ 1q ą s$.

To prove the first argument, since θpxλ1, q “ 1q ą s$ and there is no λ1 ď xλ1 such

that θpλ1, q “ 1q “ s$, we have that for any λ1 ď xλ1, θpλ1, q “ 1q ą s$. This means

there is no solution under strict priority. Since there always exists a solution under

Hybrid (Lemma 5), we know that Hybrid beats strict priority.

To prove the second argument, we first notice that under strict priority, the optimal

revenue is λq“1
1 ¨s$, which is achieved when λ1 “ λq“1

1 . This is because by the continuity

of θ, any λ1 such that θpλ1, 1q ď s$ must satisfy λ1 ď λq“1
1 , and the price is capped by

s$. This gives that Revenuepq “ 1q “ λq“1
1 ¨ s$.

On the other hand, by Theorem 3, we know that the optimal q˚ ă 1. Thus by

Lemma 6 we know that

θ˚ “ s$, E rW˚
2 s “ ĎW. (32)

This shows that the improvement ratio is

Improvement Ratio “
s$ ¨ λ˚

1

s$ ¨ λq“1
1

“
λ˚
1

λq“1
1

.

The expression for λ˚
1 can be solved from (32), which is equivalent to

λ

λ˚
1

¨ g

ˆ

λ˚
1

λ

˙

“
s$

ĎW ´ wFCFS

.
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Note that the left hand side of the equation is continuous, monotone with λ˚
1 , and

ranges from 8 to 0 when λ˚
1 takes from 0 to λ, thus there exists a unique solution of

λ˚
1 .

Finally, the formula for the improvement amount is given by

Improvement Amount “ pImprovement Ratio ´ 1q ¨ Revenuepq “ 1q.

D Additional Figures for Section 5
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(a) Max Wait ĎW “ 30.
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(b) Max Wait ĎW “ 45.

Fig. 9: The improvement ratio does not change a lot compared with Figure 4 when
α drops. In this set of experiments, we set α “ 1.1, but keep the other parameters the
same as Figure 4, namely S “ 1 (deterministic), and ĎW takes on the values shown in
(a) and (b).
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