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Abstract
In practice, the cost of delaying a job can grow as the job waits. Such behavior is
modeled by the time-varying holding cost (TVHC) problem, where each job’s instan-
taneous holding cost increases with its current age (a job’s age is the time since it
arrived). The goal of the TVHC problem is to find a scheduling policy that minimizes
the time-average total holding cost across all jobs. However, no optimality results are
known for the TVHCproblem outside of the asymptotic regime. In this paper, we study
a simple yet still challenging special case: A two-class M/M/1 queue in which class 1
jobs incur a non-decreasing, time-varying holding cost and class 2 jobs incur a con-
stant holding cost. Our main contribution is deriving the first optimal (non-decreasing)
index policy for this special case of the TVHC problem. Our optimal policy, called
LookAhead, stems from the following idea: Rather than considering each job’s current
holding cost when making scheduling decisions, we should look at their cost some X
time into the future, where this X is intuitively called the “lookahead amount." This
paper derives that optimal lookahead amount.
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1 Introduction

Every day, systems around us must decide which task to do next. A clinic decides
which patient to see, a data center chooses which request to serve, a factory picks
which order to process. In many of these settings, the cost of delaying a job increases
as it waits. In a hospital emergency department, triage protocols must account for the
fact that a patient with a moderate condition may become critical if not treated in time.
In a cloud platform delivering live video or interactive applications, delays past a few
hundred milliseconds can cause perceptible lag. In warehouses, orders with perishable
goods may incur increasing holding costs due to spoilage risk or expiry windows. In
all these systems, the scheduler must balance limited service capacity against growing
costs of delay, and must often tradeoff between completing a short but low-urgency
job and an expensive job that may take longer.

All these problems can be modeled as a stream of jobs where each job has some
instantaneous holding cost (cost per second that the job is not complete). A job’s
holding cost may be constant or vary over time. At every moment, the service provider
has to pay a total holding cost across all jobs in the system. The goal of the service
provider is to minimize the time-average holding cost across all jobs.

More formally, consider the problem of scheduling jobs in a single-server queue
to minimize the time-average holding cost. This is a classical objective in queueing
theory and operations research. Optimal scheduling is well understood when jobs
incur constant instantaneous holding cost while in system. For example, when job
sizes are exponential, the well-known cμ rule is optimal [1, 2]. For many extensions
such as general job size distributions, optimal scheduling is given by the Gittins index
policy [3, 4].

However, when the instantaneous holding cost varies over time, no optimal policy
is known. To capture cases where holding costs increase as a job is waiting, we define
a job’s age as the time that the job has spent in the system, and we let the instanta-
neous holding cost of a job be a function of its age. This Time-Varying Holding Cost
(TVHC) regime was first studied in the seminal paper by VanMieghem [5]. That paper
introduces the generalized cμ rule to minimize time-average holding cost. However,
the rule turns out to only be optimal in a special asymptotic regime, and so far no
optimality results are known outside of asymptotic regimes (see Sect. 2).

Note that our definition of age, based on time in system, is in contrast to attained
service which is sometimes called age in other literature [6, 7]. The key difficulty
with the fact that holding costs increase with age (not just attained service) is that
the problem intrinsically becomes a restless multi-armed bandit (R-MAB) problem.
These problems are notoriously difficult; it is well-known that the optimal policy for
such problems is usually intractable [8].

1.1 Our problem

In this paper, we study a simple setting of the TVHC problem (see Figs. 1 and 2) which
still captures the key difficulty of restlessness: A 2-class M/M/1 queue in which one
class of jobs has a non-decreasing holding cost function that depends on the job’s age
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Fig. 1 A 2-class M/M/1 queue
with age-based holding costs

Fig. 2 (Instantaneous) holding cost and cumulative holding cost

(time in system), while the other class has a constant instantaneous holding cost. Jobs
have exponential service times with class-dependent rates. Even this simple sounding
problem is entirely open. Our model captures many settings in which one class has a
dominant delay sensitivity. For instance, user facing jobs in computer systems serving
mixed workloads alongside background processes may have important and complex
latency requirements. Likewise in business operations, corrective maintenance tasks
may be much more urgent than preventative tasks. Our problem models many such
settings using a general non-decreasing holding cost function for one class, and a
constant holding cost for the other.

In general, the optimal policy for our problem may be arbitrarily complex. It could
be viewed as the solution to a Markov Decision Process (MDP) that needs to track
every combination of jobs with every age. One way of simplifying the problem is to
limit the search space to index policies. In an index policy, every job is assigned a
scalar-valued index as a function of its state (class and age),1 and the scheduler always
serves the job with highest index. The vast majority of scheduling policies studied in
the queueing literature are index policies (see e.g. [4, 6, 9–14]). Index policies are also
known to be optimal in many settings, such as the Gittins index for rested bandits.
However, in our setting with age-dependent holding costs, even the optimal policy
among the class of index policies is unknown.

We observe that when a class’s holding cost increases with age and its job sizes
are exponential with unknown remaining service time, the optimal policy must serve

1 If job sizes are not exponentially distributed, then the index can also be a function of the job’s attained
service, in addition to its age.
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jobs within that class in first-come-first-serve (FCFS) order [15, Lemma 3.1]. This
motivates us to restrict our search to the class of index policies which enforce FCFS
within each class: Equivalently, each class has a non-decreasing index function and
ties between jobs within a class are broken using FCFS.We refer to such index policies
as the set of non-decreasing index policies in our paper, and our goal is to find the
optimal policy within that set.

1.2 Toward solving our problem

We now turn to the question of finding the optimal non-decreasing index policy.
Intuitively, we want something like the cμrule, where the index of a job with holding
cost ci and completion rate μi is ci · μi . While the cμ rule is optimal for the case of
constant holding costs, it is not defined for our setting. When holding costs are not
constant, the generalized cμrule [5] assigns index ci (t) · μi to a job of class i and age
t . Unfortunately, the generalized cμ rule is only asymptotically optimal for the TVHC
problem.

It is easy to see what goes wrong in the generalized cμ rule: If we look at Fig. 2
when μ1 = μ2, a job of class 1 only gets priority over class 2 at the instant that the
blue and red curves cross. Would it not make more sense to prioritize class 1 jobs a
little earlier, so that we can get those jobs done before their holding cost gets really
high? That is exactly the intuition behind our proposed index policy, which we call
LookAhead. Under LookAhead, the index of class 1 jobs depends not on their holding
cost at time t , but rather their holding cost in the future, specifically X time into the
future. The “lookahead amount," X , is defined in Theorem 1.1, below, and intuition
for the amount is given later in the paper.

Theorem 1.1 (LookAhead) Supposewe have a 2-classM/M/1 queue,where class i jobs
arrive at rate λi with service rate μi for i ∈ {1, 2}. Class 1 jobs incur instantaneous
holding cost at rate c1(t) when they have age t, and class 2 jobs incur holding cost at
constant rate c2 while in system. The optimal policy among the class of non-decreasing
index policies is given by the following index functions:

V1(t) = μ1E[c1(t + X)], where X ∼ Exp(μ1 − λ1), and V2(t) = μ2c2.

Ultimately, our paper makes the following novel contributions:

(i) We derive the first optimal scheduling result for a TVHC problem.
(ii) We derive the first analysis of response time tail for an age-based scheduling policy

(see Lemma 3.3).
(iii) Our index policy coincides with the Whittle index policy for the same R-MAB

as we define [15]. The Whittle index policy is typically a heuristic with only
asymptotic optimality guarantees [16–18]. Thus we show a surprising case of
optimality for a Whittle index policy.

Thus we establish index optimal scheduling for a specific two-class TVHC setting.
Nonetheless, the amortized cμ interpretation presented in Sect. 3.5 as well as our
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recent work on the Whittle index for TVHC [15] suggest principled heuristic policies
for broader TVHC problems. In non-preemptive regimes, the same index function can
be applied at departure instants. An important question which is outside the scope of
this paper is to characterize the gap between index optimal scheduling and truly optimal
scheduling. Because the globally optimal policy is defined over a high-dimensional
continuous time state space, even empirical evaluation of this gap poses significant
challenges.

2 Related work

In this section, we review related work on scheduling that informs our study of time-
varying holding costs (TVHC). We group prior work into four areas:

First, we review classic scheduling policies that prioritize jobs based on service
received so far (Sect. 2.1). These have been well-studied but cannot analyze age-
based scheduling. Next, we discuss age-based scheduling policies (Sect. 2.2). These
are closer to our setting but only consider a few simple policies, and focus on response
time analysis rather than optimal scheduling.We then describe the generalized cμ rule
(Sect. 2.3), the only prior work offering any optimality result for TVHC; though only
in the diffusion limit. Finally, we examine Whittle index-based heuristics (Sect. 2.4)
for TVHC.

2.1 Prioritizing jobs based on attained service

The past half century of queueing literature has devoted enormous energy to study-
ing the response time of various scheduling policies in the M/G/1 queue, where the
scheduling policy makes decisions based on the service that a job has received so far
[10, Chapters 28-33]. Examples include Shortest Remaining Processing Time (SRPT)
and Least Attained Service (LAS) [11]. Recently (2018), Scully et al. [6] proposed
a unified analysis framework (SOAP) for a very broad class that includes almost all
known scheduling policies, in which a job’s priority depends on its own class, size
and the service that it has received so far.

2.2 Prioritizing jobs based on age

Much less research has gone into the analysis of scheduling policies where a job’s
priority is based on the time it has spent in the system. The notable exception is
accumulating priority scheduling [19–21]. Under this model, a job’s priority grows
linearly with the time it spends in the system (starting at priority 0). Different classes
may accumulate priority at different rates, allowing an older slow-accumulating job
to eventually overtake a newer fast-accumulating one.

However, jobs in accumulating priority models are not associated with a holding
cost function, and the goal is not to minimize holding cost, but rather to analyze
response time. Additionally, accumulating priority policies only allow analysis in
settings where two jobs that arrive at the same time will never flip relative priority [21,
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22]. That said, we do borrow some of their Poisson process transformation lemmas, in
our own technical arguments (such as adapting their [19, Lemma 4.2] for our Lemma
3.2).

2.3 Asymptotically optimal scheduling for the TVHC problem: generalized c�

The TVHC problem we consider was introduced in van Mieghem’s seminal paper [5].
This paper provided a scheduling policy known as the generalized cμ rule for mini-
mizing age-based convex holding costs. The generalized cμ rule indexes jobs by the
product of their instantaneous holding cost and instantaneous service rate. This policy
was shown to be asymptotically optimal for minimizing time-average total holding
cost in the diffusion limit (i.e., when arrival and service rates scale as nλ and nμ as
n → ∞) under heavy traffic for multi-class M/G/1 queues with convex holding costs
as a function of delay [5, Proposition 8].

The generalized cμ rule is, to our knowledge, the only work to provide any opti-
mality guarantees for TVHC, and only in the asymptotic scaling regimes. In contrast,
our work develops an index policy that is provably optimal in finite time-scales.

Interestingly, the generalized cμ rule corresponds to our policy in the special case
where the optimal lookaheadparameter X → 0.This happens precisely in the diffusion
limit, thus our result is consistent with vanMieghem’s Proposition 8, and hence is also
asymptotically optimal. But under finite time-scales, we demonstrate (see Sect. 5) that
our LookAhead policy can significantly outperform the generalized cμ rule.

2.4 Heuristic scheduling for TVHC: whittle

Many scheduling problems can be viewed as instances of multi-armed bandit (MAB)
problems. In a standard Markov MAB model, each arm corresponds to a Markov
process with internal states that evolve according to a transition model. The agent
selects one arm to activate at each time step, accruing a cost determined by the states
of all arms, and seeks to minimize the long-run average cost. In scheduling, each job
or job class corresponds to an arm, and the decision is which job to serve at a given
time.

The MAB framework has led to powerful results in optimal scheduling, such as
the Gittins index policy, which is optimal for preemptive scheduling in an M/G/1
queue with unknown job size distributions [4]. These results fall under the category
of rested bandits, where the state of an arm (i.e., a job) evolves only when the arm is
pulled—equivalent to a job being served.

However, when a job’s state (e.g., age) evolves even while it is not being served,
the problem becomes a restless bandit. This setting is significantly harder: It is known
to be PSPACE-hard in general, and optimal policies are difficult to characterize [8].
Several papers have proposed Whittle index-based policies for various scheduling
problems [13–15, 23]. However, works in this literature only provide heuristics with
only asymptotic guarantees.

In particular, Li et al. [15] provide a Whittle index policy for TVHC. This work
develops a heuristic index policy based on job age and demonstrates strong empirical
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performance. In fact, the policy that we analyze in this paper coincides with the one
proposed in [15]. However, [15] does not establish optimality. In contrast, we provide
a rigorous proof that this policy is the optimal index policy for one type of two-class
TVHC problem.

We also borrow several key structural lemmas from [15], particularly in our analysis
of the cost dynamics and structural monotonicity properties of the value function,
which are used in our main proof arguments. To the best of our knowledge, ours is the
first work to prove the optimality of an exact index policy for a dynamic, delay-based
holding cost problem.

For a broader overview of bandit models and index policies in scheduling, we refer
readers to [15, 24].

3 A shorter proof using an additional assumption

In this section,we present a shorter proof of our result using one additional assumption.
Intuitively, since class 2 jobs have constant holding cost, it is reasonable to assume
that the index of class 2 jobs should be constant. This is the crux of Assumption 3.1
(explained more rigorously below). Based on this assumption, we will now derive the
optimal non-decreasing index policy. A longer and more involved proof without this
assumption is provided in Sect. 4.

We structure this section as follows: In Sect. 3.1, we define Assumption 3.1. In Sect.
3.2, we discuss the structure imposed on the scheduling problem when class 1 has an
arbitrary non-decreasing index function and class 2 has a constant index. We call the
class of policies defined by this structure “Overtake.” In Sect. 3.3, we analyze the
response time tail for any Overtake policy. In Sect. 3.4, we use the response time tail
analysis to analytically solve the optimization problem of minimizing time-average
holding cost among Overtake policies.

3.1 Discussion of the additional assumption

Recall that the goal of this paper is to find the optimal non-decreasing index policy.
This section makes an assumption that the index for class 2 jobs should not only be
non-decreasing, but furthermore be a constant.

Assumption 3.1 There exists an optimal non-decreasing index policy where the index
for any class 2 job is a constant regardless of the job’s age.

Although this assumption is well-motivated, it is not obvious. For example, one
may argue that the age of a class 2 job reveals some information about the number of
class 2 jobs in the system, which may affect the decision. The longer proof in Sect. 4
addresses these concerns and justifies our result.

Using Assumption 3.1 allows us to restrict our optimization problem to the class
of Overtake policies, which provides for a simpler proof.
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Fig. 3 Overtake(α) policy

3.2 Policy class: Overtake

For any non-decreasing index policy where the class 2 index is a constant, let V1, V2
be the index functions of class 1 and class 2 jobs, respectively. Define α to be the
youngest age where V1(α) = v = V2(·), where v represents the constant index of any
class 2 job. Then the index policy is equivalent to a policy which has three levels of
priority: (Q0) class 1 jobs with age � α; (Q2) all class 2 jobs; and (Q1) class 1 jobs
with age < α. Within each level of priority, jobs are served in FCFS order. We call
this policy Overtake(α). Pictorially, it can be illustrated in Fig. 3, where priority is
enforced as: Q0 > Q2 > Q1.

In this way, any non-decreasing index policy with constant class 2 index is equiv-
alent to some Overtake policy. Thus, by Assumption 3.1, the optimal non-decreasing
index policy is equivalent to some Overtake policy. Therefore, to find an optimal non-
decreasing index policy, it suffices to optimize time-average total holding cost within
the class of Overtake policies.

3.3 Characterizing response time tail

In this section,we derive the tail of the response time of class 1 jobs underOvertake(α).
The key insight is the following lemma: The busy period of Q0 can be seen as that of
an M/M/1 queue. Note that this does not imply that Q0 is an M/M/1 queue, because
the inter-arrival times of jobs into Q0 during a Q0-idle period are not exponentially
distributed.

Lemma 3.2 Let T M/M/1 denote the response time of an M/M/1 queue with arrival
rate λ1 and job size distribution Exp(μ1) under an FCFS policy. Then jobs that enter
Q0 will stay in Q0 for a time distributed as T M/M/1.

Proof We track the dynamics of the oldest age in Q0 and in a standard M/M/1 queue.
Note that for any sample path, the oldest age trajectory uniquely determines the
response time of each job (since each oldest age drop is equivalent to a job com-
pletion). Thus, it suffices to prove that the stochastic behaviors of the oldest age in Q0
and the M/M/1 queue are the same during a Q0 busy period.

Define the oldest age in an M/M/1 queue to be A. If A < 0, this means there is
no job in the M/M/1 queue, and the next job arrives (−A) time later. In this case,
A grows with rate 1. Otherwise if A > 0, during each δ time step, with probability
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1−μ1δ+o(δ), no job is finished and the oldest age grows with rate 1.With probability
μ1δ + o(δ), the oldest job is finished.2 3 In this case, since the inter-arrival time is
Exp(λ1), we know that the oldest age drops by a random variable Exp(λ1). If the oldest
age drops below 0, the busy period ends.

Similarly, in Q0, if there exists jobs in Q0, define the time the oldest job in Q0 has
spent in Q0 to be A0. By definition of the Overtake(α) policy, A0 is equal to the age of
the oldest job in Q0 minus α. Thus, a busy period in Q0 starts with A0 = 0, and then
the oldest age A0 follows the same dynamics as A in an M/M/1 queue (when A > 0),
until A0 drops below 0, which means that the Q0 busy period ends. Therefore, A0 has
the same dynamics as A when they are larger than 0, which means the job completion
process in Q0 is the same as that in anM/M/1 queue during any Q0 busy period. Thus,
the time a job spends in Q0 given it has entered Q0 is equal to the response time in
an M/M/1 queue. ��

The following lemma characterizes the tail probability of a class 1 job’s response
time. Using Lemma 3.2, we are able to express a class 1 job’s response time in terms of
the response time under a strict priority queueing systemwhere class 2 has preemptive
priority over class 1.

Lemma 3.3 (Tail Probability of Class 1 jobs) Let T α
1 denote the response time of class

1 jobs under the Overtake(α) policy. Let T P-Prio(2;1)
1 denote the response time of class

1 jobs in a preemptive priority system where class 2 jobs have strict priority over class
1 jobs. Then the tail probability of T α

1 is as follows:

P
[
T α
1 > t

] =
⎧
⎨

⎩

P

[
T P-Prio(2;1)
1 > t

]
if t � α,

P

[
T P-Prio(2;1)
1 > α

]
· e−(t−α)(μ1−λ1) otherwise.

(1)

Proof We start by considering the case where t � α. We will prove that

P
[
T α
1 � t

] = P

[
T P-Prio(2;1)
1 � t

]
.

Let t � α. For any tagged class 1 job whose response time is� t , letWα denote the
work that runs ahead of the tagged class 1 job in the Overtake(α) system. Because our
tagged class 1 job does not enter Q0, we can expressWα as a sum of two components:
(i) all the class 1 jobswhich arrive before our job, and (ii) all the class 2 jobswhich arrive
before our tagged class 1 job completes. ThereforeWα is the same asW P-Prio(2;1), the
work that runs ahead of our tagged class 1 job in a P-Prio(2; 1) system. Therefore,
the response time of our tagged class 1 job is the same under Overtake(α) and under
P-Prio(2; 1), assuming that these response times are � α. We have thus shown that

P
[
T α
1 � t

]
� P

[
T P-Prio(2;1)
1 � t

]
.

2 For the remainder of this paper, we use δ to refer to a small time step and omit the o(δ) terms in δ-time
step discrete optimizations of our continuous time system.
3 An alternative way to describe the dynamics of A is d A = dt − I · dNμ1 (t), where I ∼ Exp(λ1), and
Nμ1 is a Poisson counting process with rate μ1.
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Moreover, the response time of a class 1 job is smaller in any Overtake policy than
in P-Prio(2; 1). Thus

P
[
T α
1 � t

]
� P

[
T P-Prio(2;1)
1 � t

]
.

These two facts show that

P
[
T α
1 > t

] = P

[
T P-Prio(2;1)
1 > t

]
, for t � α.

For t > α, we can condition on the class 1 job reaching age α (thus entering Q0):

P
[
T α
1 > t

] = P
[
T α
1 > t | T α

1 > α
] · P

[
T α
1 > α

]

= P
[
T α
0 > t − α | T α

1 > α
] · P

[
T P-Prio(2;1)
1 > α

]
,

where T α
0 is the time that class 1 job stays in Q0.

By Lemma 3.2, we know that T α
0 is the same as the response time in an M/M/1

queue. It is well-known that the tail probability of response time in this M/M/1 queue
is

P

[
T M/M/1 > t

]
= e−(μ1−λ1)t .

Thus we have that

P
[
T α
0 > t − α | T α

1 > α
] = Pr [T M/M/1 > t − α] = e−(μ1−λ1)(t−α). (2)

This allows us to express the tail probability when t > α as:

P
[
T α
1 > t

] = P
[
T α
0 > t − α | T α

1 > α
] · P

[
T P-Prio(2;1)
1 > α

]

= P

[
T P-Prio(2;1)
1 > α

]
· e−(μ1−λ1)(t−α).

��

3.4 Optimization problem

In this section, we derive the optimal Overtake policy. The proof is organized in the
following order: First, using the conservation law on mean response times [25], we
transform our optimization problem into terms purely dependent on T α

1 in Lemma
3.5. We then use our tail analysis from Lemma 3.3 to analytically solve the resulting
optimization problem: Two lemmas are derived in Lemmas 3.6 and 3.7 and finally we
prove Theorem 3.8. The optimal non-decreasing index policy is a direct corollary of
Theorem 3.8, which is stated in Corollary 3.9.

We start by introducing a definition to simplify our objective.
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Definition 3.4 (Ĉost) Let c̄1(t) = ∫ t
0 c1(s) ds refer to the cumulative holding cost

incurred by a class 1 job when it has reached age t . We define Ĉost := E[c̄1(T α
1 )] −

c2
μ2
μ1

E[T α
1 ].

Now we apply the conservation law to the objective.

Lemma 3.5 Minimizing time-average total holding cost is equivalent to minimizing
Ĉost .

Proof Since preemption is allowed, any reasonable policy is work conserving. Thus,
we can apply the conservation law [25]:

ρ1E[T α
1 ] + ρ2E[T α

2 ] = W , (3)

where W is the time-average amount of work in an M/G/1 system with both class 1
jobs and class 2 jobs, which can be expressed as

W = 1

1 − ρ

(
λ1

μ2
1

+ λ2

μ2
2

)

.

From (3), we have that

E[T α
2 ] = W

ρ2
− ρ1

ρ2
E[T α

1 ].
This means the time-average total holding cost is equal to

E[Cost] = λ1E[c̄1(T α
1 )] + λ2c2E[T α

2 ]
= λ1E[c̄1(T α

1 )] + λ2c2

(
W

ρ2
− ρ1

ρ2
E[T α

1 ]
)

= λ1Ĉost + λ2c2
W

ρ2
.

This means minimizing the time-average total holding cost is equivalent to mini-
mizing Ĉost . ��

We give a basic formula for exponential random variables.

Lemma 3.6 For any smooth function f and exponential variable X, we have that

E[ f (x0 + X)] − f (x0) = E[X ]E[ f ′(x0 + X)].

f (x0) − E[ f (x0 − X)] = E[X ]E[ f ′(x0 − X)].
Proof Suppose X ∼ Exp(θ). Then we have that

E[ f (x0 + X)] − f (x0) =
∫ ∞

0
f ′(x0 + t)P [X > t] dt
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=
∫ ∞

0
f ′(x0 + t)e−θ t dt

= 1

θ

∫ ∞

0
f ′(x0 + t)θe−θ t dt

= E[X ]E[ f ′(x0 + X)].

The other equation is derived similarly. ��
Lemma 3.7 For any differentiable function c(·),

dE[c(T α
1 )]

dα
= E[c′(α + Exp(μ1 − λ1))]dE[T α

1 ]
dα

.

Proof We combine Lemmas 3.6 and 3.3.

E[c(T α
1 )] = c(0) +

∫ ∞

0
c′(t)Pr[T α

1 > t]dt

= c(0) +
∫ α

0
c′(t)Pr[T α

1 > t]dt +
∫ ∞

α

c′(t)Pr[T α
1 > t]dt

= c(0) +
∫ α

0
c′(t)Pr[T P-Prio(2:1)

1 > t]dt

+ Pr[T P-Prio(2:1)
1 > α]

∫ ∞

0
c′(α + s)e−(μ1−λ1)sds (by Lemma 3.3)

= c(0) +
∫ α

0
c′(t)Pr[T P-Prio(2:1)

1 > t]dt

+ Pr[T P-Prio(2:1)
1 > α] 1

μ1 − λ1
E[c′(α + Exp(μ1 − λ1))]

= c(0) +
∫ α

0
c′(t)Pr[T P-Prio(2:1)

1 > t]dt + Pr[T P-Prio(2:1)
1

> α] (E[c(α + Exp(μ1 − λ1))] − c(α)) (by Lemma 3.6)

Thus,

dE[c(T α
1 )]

dα
= c′(α)Pr[T P-Prio(2:1)

1 > α] + d Pr[T P-Prio(2:1)
1 > α]

dα

(E[c(α + Exp(μ1 − λ1))] − c(α)) + Pr[T P-Prio(2:1)
1 > α]

(
E[c′(α + Exp(μ1 − λ1))] − c′(α)

)

(Dominated Convergence Theorem)

= d Pr[T P-Prio(2:1)
1 > α]

dα
(E[c(α + Exp(μ1 − λ1))] − c(α))

+ Pr[T P-Prio(2:1)
1 > α]E[c′(α + Exp(μ1 − λ1))]

=
(

Pr[T P-Prio(2:1)
1 > α] + d Pr[T P-Prio(2:1)

1 > α]
dα

1

μ1 − λ1

)
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E[c′(α + Exp(μ1 − λ1))]. (by Lemma 3.6)

Note that this equation holds for any function c. By substituting the function c(t) =
t , we have that

dE[T α
1 ]

dα
= Pr[T P-Prio(2:1)

1 > α] + d Pr[T P-Prio(2:1)
1 > α]

dα

1

μ1 − λ1
.

Thus, we have that

dE[c(T α
1 )]

dα
= dE[T α

1 ]
dα

· E[c′(α + Exp(μ1 − λ1))].

��
Finally, we characterize the optimal Overtake policy.

Theorem 3.8 (Optimal Overtake policy) The optimal Overtake policy, which we call
Overtake(α∗), is characterized as follows:

• If E[c1(Exp(μ1 − λ1))] >
c2μ2
μ1

, the optimal α∗ is 0, which means that giving full
priority to class 1 jobs is optimal.

• If limt→∞ c1(t) <
c2μ2
μ1

, the optimal α∗ goes to infinity, which means that giving
full priority to class 2 jobs is optimal.

• Otherwise, the optimal α∗ satisfies

E[c1(α∗ + Exp(μ1 − λ1))] = c2μ2

μ1
. (4)

Further, the time-average total holding cost is convex in overtake age.

Proof Define c(t) = μ1c̄1(t) − μ2c2t . Thus we have that for policy Overtake(α),
Ĉost = E[c(T α

1 )]. By Lemma 3.7, we know

dĈost

dα
= (μ1E[c1(α + Exp(μ1 − λ1))] − μ2c2)

dE[T α
1 ]

dα
.

Since increasing α makes class 1 response times strictly larger, we have that
dE[T α

1 ]
dα

>

0. Moreover, since c1 is non-decreasing, μ1E[c1(α + Exp(μ1 − λ1))] − μ2c2 is non-
decreasing in α.

Now if dĈost
dα

> 0 for all α � 0, then α∗ = 0 is optimal. Likewise, if dĈost
dα

< 0 for
all α � 0, the optimal α goes to infinity, which means full priority to class 2 jobs is

optimal. Otherwise dĈost
dα

crosses 0 exactly once at α∗ defined in Equation (4). This
means the policy Overtake(α∗) is the optimal Overtake policy. ��

Finally, the optimal non-decreasing index policy follows directly from Assump-
tion 3.1 and Theorem 3.8. In particular, we call this policy LookAhead policy.
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Fig. 4 Expected additional cost accrued by a class 1 jobs which has reached age t

Corollary 3.9 Given Assumption 3.1, the optimal policy, called LookAhead, among the
class of non-decreasing index policies is given by the following index functions:

V1(t) = μ1E[c1(t + X)], where X ∼ Exp(μ1 − λ1), and V2(t) = μ2c2.

Proof Given Assumption 3.1, the optimal non-decreasing index policy has a constant
class 2 index. Therefore, it is equivalent to some Overtake policy. Moreover, the index
policy defined by index functions V1(t) = μ1E[c1(t + X)] and V2(t) = μ2c2 is
equivalent to Overtake(α∗), the optimal Overtake policy. Thus we have the proof. ��

3.5 An intuitive interpretation of the LookAhead policy via amortized cost

Our policy stated in Corollary 3.9 can be seen as an amortized cμ rule.
A class 1 job with age t will accrue an expected remaining holding cost of

expected remaining holding cost = E[c̄1(T1)|T1 � t] − c̄1(t).

It will accrue this cost over its expected remaining time in system, where

expected remaining time in system = E[T1|T1 � t] − t .

Suppose the job were to incur its expected remaining holding cost over its expected
remaining time in systemat a constant instantaneous holding cost rate, then the effective
expected cost rate (see Fig. 4) would be

ceff1 (t) = E[c̄1(T1)|T1 � t] − c̄1(t)

E[T1|T1 � t] − t
.

If we defined ceff2 similarly, we would have ceff2 (t) = c2 since c2(t) is constant.
We could then apply the cμ rule to the constant holding costs ceff1 and ceff2 by always
running the job with the highest μi ceffi (t). Note that this policy definition is recursive
since the response time distribution depends on the policy, and we are stipulating a
policy which depends on the response time.

Interestingly, it turns out that our LookAhead policy is an amortized cμ rule policy
for the problem setting in our paper. To see this, note that since c2(t) is constant, we

123



Queueing Systems            (2026) 110:7 Page 15 of 35     7 

will always have ceff2 (t) = c2. Further, if c1(·) is increasing,

ceff1 (t) = E[∫ T1|T1�t
t c1(s) ds]

E[∫ T1|T1�t
t 1 ds]

is also increasing. As discussed in Sect. 3.2 and Fig. 3, this means the policy reduces
to an Overtake(α) policy for α such that μ1ceff1 (α) = μ2c2. Then as discussed in
Lemma 3.2, class 1 jobs enter an M/M/1 queue past their overtake age and experience
response time [T1|T1 � α] = α + X , where X ∼ Exp(μ1 − λ1). Thus we have

μ1c
eff
1 (α) = μ1 · E[c̄1(α + X) − c̄1(α)]

E[X ] = μ1E[c1(α + X)](by Lemma 3.6)

Therefore the amortized cμ rule’s Overtake age α is exactly the optimal Overtake
age α∗ derived in Theorem 3.8. Equivalently, we can say that our LookAhead policy
always serves the job with highest amortized cμ index. This view gives us intuition for
why the optimal LookAhead amount is X , where X is the response time of an M/M/1
queue with only class 1 jobs.

4 A longer proof without assumption 3.1

In Sect. 3, we proved that our policy is optimal under Assumption 3.1. That is, our
policy is optimal among those policies which have a non-decreasing index function
for class 1 and a constant index for class 2. In this section, we relax Assumption 3.1.
Namely, we show that our policy LookAhead (which is equivalently Overtake(α∗)) is
optimal among policies where both index functions, V1 and V2, are non-decreasing.
Recall that Overtake(α∗) is defined in Theorem 3.8. Specifically, in this section we
only consider the interesting case where α∗ satisfies (4). The proof of optimality for
the case when α∗ = 0 is a straightforward modification of our proof. For the case
when α∗ → ∞, an interchange argument can be used to prove that P-Prio(2;1) is
optimal.

4.1 Translating to R-MAB

We begin by translating our holding cost problem to an R-MAB problem provided
by [15, Theorem 1]. As stated in Lemma 3.5, our holding cost minimization problem
is equivalent to a holding cost minimization problem where the holding cost of class
1 is c(t) = μ1c1(t) − c2μ2, and class 2 jobs have zero holding cost. Applying [15,
Theorem 1] to the new holding costs yields the following bandit.

Theorem 4.1 (Theorem 1, [15]) For any set of non-decreasing index functions
{Vi (·)}ki=1, the corresponding index policies (breaking ties by FCFS) in the TVHC
problem incur the same cost as in the following R-MAB problem:
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• The R-MAB has 2 arms, each representing a class. There are two actions for each
arm (active or passive), where arm i is active means the oldest class i job is served,
and passive means the job served at this moment is of the other type.

• States: At any time, we can represent the state of the R-MAB system by the age
of the oldest job of each class. Namely, we can represent the system state space as
S = R

2, where (t1, t2) represents the state where the oldest class i job has age ti
for i ∈ {1, 2}. If there is no type i job in the system, ti is negative, which means the
next type i arrival happens (−ti ) time later. Note that for arm i , the action active
is only allowed when ti is positive.

• Transition Probability: If the action for arm i is passive, the i th arm state grows
with rate 1. Otherwise if arm i is active, the i th arm state may drop an Exp(λi )
amount according to a Poisson process (when completions happen). Mathemati-
cally, the transition function is

passive: dti = dt, active: dti = dt − I · dNμi (t),

where I ∼ Exp(λi ), and Nμi is a Poisson counting process with rate μi .
This transition function can be interpreted in the TVHC problem as follows: A
passive action means that the oldest class i job is not in service and its age grows
with rate 1. If the action is active, then in the next dt time period, the oldest
class i job is served. There is a probability of μi dt that the job is completed and
leaves the system, in which case the oldest class i job in the system becomes
the previously second-oldest class i job. Since the inter-arrival time follows the
distribution Exp(λi ), the age of the oldest job drops by an Exp(λi ) amount.

• Cost Function r(t1): for any system state (t1, t2), define the cost incurred in the
system to be

r(t1) := c(t1) + E[
N∑

j=1

c(Y j )], (5)

where Y j = ∑ j
m=1 Im , Im ∼ Exp(λ1), and N is the random variable denoting

the smallest stopping time such that YN+1 � t1. Observe that the second term of
(5) represents the expected holding cost of all class 1 jobs present, except for the
oldest class 1 job.
Note that the cost function r(t1) depends only on the class 1 state, t1. This is
consistent with our reformulation of the problem where class 1 has holding cost
c(t) and class 2 has zero holding cost.

• Objective: The objective is to minimize the long-run expected cost.

4.2 Bellman criteria for optimality

Note that the length of a busy period of a queueing system is identical for any work
conserving policy. Thus, since our objective is to minimize the long-run cost incurred
in a renewal system, by the Renewal Reward Theorem, it suffices to minimize the cost
incurred in each busy period.
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A policy π specifies which arm to pull at each state. Specifically, if π pulls arm
1 at state (t1, t2), we define π(t1, t2) = 1. Let Vπ (t1, t2) be the cost incurred starting
from state (t1, t2), until the end of the first busy period (i.e., the first time t1, t2 < 0),
under policy π . Define the Q-value of a policy π , an action a and a state s to be the
total cost incurred until the end of the busy period, given that we start in state s, do
action a for the next δ time, and act according to policy π thereafter, until the end of
the busy period. Then the Q-values of policy π for pulling arm 1 or 2 in state (t1, t2)
can be expressed as follows:

Q((t1, t2), |1, δ, π |) = r(t1)δ + (1 − μ1δ)Vπ (t1 + δ, t2 + δ)

+ μ1δE[Vπ (t1 + δ − I1, t2 + δ)] + o(δ),

Q((t1, t2), |2, δ, π |) = r(t1)δ + (1 − μ2δ)Vπ (t1 + δ, t2 + δ)

+ μ2δE[Vπ (t1 + δ, t2 + δ − I2)] + o(δ), (6)

where Ii ∼ Exp(λi ) and |i, δ, π | refers to the policy which pulls arm i for the first δ

time, then follows policy π .
By Bellman optimality, a policy π∗ is optimal if and only if the following Bellman

criteria is satisfied for any t1, t2 � 0 [26]:

if π∗(t1, t2) = 1, then lim
δ→0

Q((t1, t2), |1, π∗|) − Q((t1, t2), |2, π∗|)
δ

� 0,

if π∗(t1, t2) = 2, then lim
δ→0

Q((t1, t2), |1, π∗|) − Q((t1, t2), |2, π∗|)
δ

� 0.

By (6), this is equivalent to

if π∗(t1, t2) = 1, then

μ1(Vπ∗(t1, t2)−E[Vπ∗(t1 − I1, t2)])�μ2(Vπ∗(t1, t2)−E[Vπ∗(t1, t2−I2)]),
if π∗(t1, t2) = 2, then

μ2(Vπ∗(t1, t2)−E[Vπ∗(t1−I1, t2)])�μ2(Vπ∗(t1, t2)−E[Vπ∗(t1, t2−I2)]).
(7)

In the following subsections, we will show that our policy Overtake(α∗) satisfies
the above Bellman optimality criteria for the R-MAB problem.

Overtake(α∗) prefers arm 1 over arm 2 in state (t1, t2) iff t1 � α∗. For ease of
notation, we omit expectations and for example write V (t1− I1, t2 − I2) to refer to the
expectationEI1,I2

[
VOvertake(α∗)(t1 − I1, t2 − I2)

]
. Under Overtake(α∗), (7) transform

into the following claims: For all t2 � 0,

Claim 1. If t1 � α∗,μ1(V (t1, t2)−V (t1− I1, t2)) � μ2(V (t1, t2)−V (t1, t2 − I2)).
Claim 2. If 0 � t1 < α∗, μ1(V (t1, t2)−V (t1 − I1, t2)) � μ2(V (t1, t2)−V (t1, t2 −

I2)).

The following definition provides notation for a busy period started by some initial
work. We will use this notation throughout the rest of this section.
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Definition 4.2 (Busy period with initial work) We denote the length of a busy period
started byW0 initial work, and with Poisson arrivals of rate λ and job-size distribution
S, as BP[W0; λ, S].

We also provide notation characterizing the 2-class M/M/1 queue, which we will
use throughout the rest of this section.

Definition 4.3 (λ, S) Let the total mean arrival rate to the two class M/M/1 queue be
denoted as

λ = λ1 + λ2.

Let the job size distribution of class i be Si ∼ Exp(μi ) for i ∈ {1, 2}. The overall job
size distribution is denoted

S =
{
S1, with probability λ1

λ
,

S2, with probability λ2
λ

.

4.3 Verifying claim 1

The goal of this section is to verify Claim 1 (Proposition 4.16). We start by defining
the notation for the total class 1 work arriving during a t period of time.

Definition 4.4 Define Ŵ (t) to be the total class 1 work arriving during a t period of
time. Mathematically,

Ŵ (t) :=
N∑

i=1

S(i)
1 ,where S(i)

1 ∼ Exp(μ1), N ∼ Pois(λ1t).

We define a random process A. Intuitively, A represents the dynamics of the oldest
age in an M/M/1 queue with arrival rate λ1 and job size distribution Exp(μ1).

Definition 4.5 (A) Given an initial state A(0), we define the following random process
A: At each time t ,

• if A(t) < 0, then d A(t) = dt ;
• if A(t) � 0, then d A(t) = dt − I · dNμ1(t), where I ∼ Exp(λ1) and Nμ1 is a
Poisson counting process with rate μ1.

Now we introduce a lemma characterizing the value function of Overtake(α∗).

Lemma 4.6 For any t1 � α∗,

V (t1, t2) = E

[∫ BP[S1+S2+Ŵ (t1−α∗);λ,S]

0
r(α∗ + A(t)) dt

∣∣∣A(0) = t1 − α∗
]

+ V (α∗ − I1, t2 − I2) (8)
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Fig. 5 Only jobs in the active queue (on the right) are visible to the server

V (t1, t2 − I2) = E

[∫ BP[S1+Ŵ (t1−α∗);λ,S]

0
r(α∗ + A(t)) dt

∣∣∣A(0) = t1 − α∗
]

+ V (α∗ − I1, t2 − I2) (9)

V (t1 − I1, t2) = E

[∫ BP[S2+Ŵ (t1−α∗);λ,S]

0
r(α∗ + A(t)) dt

∣∣∣A(0) = t1 − α∗ − I1

]

+ V (α∗ − I1, t2 − I2) (10)

Proof We view the system through “glasses” where we only see class 1 jobs of age
� α∗ and class 2 jobs of age � t2, as in Fig. 5. We call these jobs active.

In state (t1, t2), the system starts with one visible job of each class, and Poisson
arrivals behind these oldest jobs. Under the policy Overtake(α∗), we will serve only
active jobs as long as we see them, and we will serve them P-Prio(1; 2) for this time.
Further, while we are only serving active jobs, we will see Poisson arrivals of both
classes to the active queue.

Since the initial active work is the oldest job of each class (of age, respectively,
t1 and t2), and also any younger class 1 jobs with age larger than α∗, the total initial
active work is S1 + S2 + Ŵ (t1 − α∗). Thus we will serve active jobs for a total busy
period BP[S1+ S2 + Ŵ (t1−α∗); λ, S]. The busy period ends at a departure, when the
next oldest job of each class is younger than α∗ and t2, respectively: The ages of the
oldest jobs in class 1 and class 2 are, respectively, distributed as α∗ − I1 and t2 − I2 at
the end of the busy period. This means at the end of the busy period, the system state
is distributed as (α∗ − I1, t2 − I2).

Similarly, in states (t1, t2 − I2) and (t1 − I1, t2), we serve jobs for busy periods
BP[S1 + Ŵ (t1 − α∗); λ, S] and BP[S2 + Ŵ (t1 − α∗); λ, S], respectively. At the end
of the busy period, we reach the same state distribution (α∗ − I1, t2 − I2). ��

Thus, using this lemma, to prove Proposition 4.16 it suffices to characterize the
expectation terms in Lemma 4.6. The approach we adopt is: We strategically intro-
duce a discount factor β into the expectation terms, and use Lemmas from [15] to
characterize the discounted terms. Then we take the limit β → 0 to obtain the expres-
sions for the expectation terms in Lemma 4.6.

4.3.1 Introducing the discount factor

In order to characterize the expectation terms in Lemma 4.6, we introduce a discount
factor β and define the following discounted version of our expectations.
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Definition 4.7 For any t1 � α∗, define

	β(t1,W ) = E

[∫ BP[W ;λ;S]

0
r(α∗ + A(t))e−βt dt

∣∣ A(0) = t1 − α∗
]

. (11)

Note that the expectation terms in Lemma 4.6 can be captured by 	β by taking the
limit β → 0. We use the following term as an intermediate step to get the expression
for 	β .

Definition 4.8 For any t1 � α∗, define

Uβ(t1) = E

[∫ ∞

0
r(α∗ + A(t))e−βt dt | A(0) = t1 − α∗

]
. (12)

The following subsection manipulates several lemmas from [15] to get an expres-
sion of Uβ , and then in Sect. 4.3.3 we return to 	β and finally the expectation terms
in Lemma 4.6.

4.3.2 Characterizing Uˇ

In this subsection, lemmas from [15] are used to characterize Uβ . We adapt the fol-
lowing definitions from [15].

Definition 4.9 (Definitions in [15]) For any variable Y , define Ỹ (x) := E[e−xY ] to
be its Laplace transform. Define

γ1 := E[e−β BP[S1;λ1;S1]] = B̃P[S1; λ1; S1](β), (13)

γ2 := E[e−β I1 ] = Ĩ1(β), (14)

X ∼ Exp

(
β

1 − γ1

)
, (15)


Cost(t, β) := E[
∫ BP[S1;λ1;S1]

0
r(t + A(t)) · βe−βt dt

∣∣∣ A(0) = 0], (16)

�(t, β) := E[
∫ I1

0
r(t − I1 + t) · βe−βt dt], (17)

�(t, α∗) := E[
M∑

i=1

γ i−1
1


Cost(yi , β)], (18)

where y1 = t − Exp(λ1), yi+1 = yi − Exp(λ), and M is the random variable such
that yM � α∗, yM+1 < α∗, with M ∼ Pois(λ1(t − α∗)).

The following lemma from [15] gives the closed form of these terms.
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Lemma 4.10 (Lemmas in [15]) For the terms defined in Definition 4.9, we have the
following expressions:


Cost(t, β) = (1 − γ1)E[r(t + X)], where X ∼ Exp

(
β

1 − γ1

)
, (19)

�(t, β) = (1 − γ2)E[r(t − I1)], (20)

�(t, α∗) =
∫ t

α∗
e−λ1(1−γ1)(t−s)λ1 
Cost(s, β)ds, (21)

E[γ M
1 ] = PGF(γ1) = e−λ(t−α∗)(1−γ1). (22)

Proof See Lemma 4.17, 4.18 and Case 2 of Lemma E.1 in [15]. ��
We can use the terms defined in Definition 4.9 to get the characterization of Uβ .

Lemma 4.11 For any t1 � α∗,

Uβ(α∗ − I1) = 1

1 − γ1γ2

(
1

β
�(α∗, β) + γ2

1

β

Cost(α∗, β)

)
(23)

Uβ(t1) = 1

β

( 
Cost(t, β) + γ1�(t1, α
∗)

) + E[γ M+1
1 ]Uβ(α∗ − I1). (24)

Uβ(t1 − I1) = 1

β
�(t1, α

∗) + E[γ M
1 ]Uβ(α∗ − I1). (25)

Proof We start by proving (23). Starting at state α∗ − I1, there is first an I1 period of
time before A(t) returns to 0. During this period of time, 1

β
�(α∗, β) cost is incurred.

Then starting at A = 0, by definition, a cost of 1
β


Cost(α∗, β) is incurred during a
BP(S1; λ1; S1) time period. Finally, A returns to the state α∗ − I1 (because each drop
is Exp(λ1)). Given that γ1, γ2 are, respectively, the discounting factor after time period
I1 and BP(S1; λ1; S1), we have that

Uβ(α∗ − I1) = 1

β
�(α∗, β) + γ2

1

β

Cost(α∗, β) + γ1γ2Uβ(α∗ − I1).

This proves the first equation.
To prove (24), we use a similar argument as in Lemma E.1 in [15]: Starting from

A = t1, the policy stays active until the state drops below t1. During this time
(BP(S1; λ1; S1)), a cost of 
Cost(t1, β) is incurred. After the state drops below t1,
the amount it is below t1 follows an exponential distribution with rate λ1. Suppose it
is y1 ∼ t1 −Exp(λ1). If y1 is still larger than α∗, the policy stays active until the state
drops below y1, incurring another 
Cost(y1, β) cost. This process continues until the
state drops below α∗. Note that each time a 
Cost(yi , β) is incurred, the state drops by
an exponential amount, thus the total number of iterations follow a Poisson distribu-
tion Pois(λ1(t1 − α∗)). After the final iteration, the state is Exp(λ1) below α∗. This
process yields (24).

Equation (25) can be proved by a similar argument. ��
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Finally, we take the limit β → 0 on the expressions. We first give the following
well-known lemma characterizing the limit of a Laplace transform.

Lemma 4.12 Given a random variable Y , we have that

lim
β→0

1 − Ỹ (β)

β
= E[Y ].

Proof The proof follows immediately from L’Hospital’s Rule and the property of the
Laplace transform:

lim
β→0

1 − Ỹ (β)

β
= −Ỹ ′(0) = E[Y ].

Thus we can take the limit β → 0 on the random variables.

Lemma 4.13 When β → 0, we have that

lim
β→0


Cost(t, β)

β
= 1

μ1 − λ1
E[r(t + Exp(μ1 − λ1))], (26)

lim
β→0

�(t, β)

β
= 1

λ1
E[r(t − I1)], (27)

lim
β→0

�(t, α∗)
β

= λ1

μ1 − λ1

∫ t

α∗
E[r(s + Exp(μ1 − λ1))]ds, (28)

lim
β→0

1 − E[γ M
1 ]

β
= λ1(t − α∗) 1

μ1 − λ1
, (29)

lim
β→0

βUβ(α∗ − I1) = (μ1 − λ1)E[r(α∗ − I1)] + λ1E[r(α∗ + Exp(μ1 − λ1))].
(30)

Proof

lim
β→0


Cost(t, β)

β
= lim

β→0

1 − γ1

β
E[r(t + Exp(

β

1 − γ1
))]

= E[BP[λ1; S1]]·
E[r(t + Exp(

1

E[BP[λ1; S1]] ))]
(Dominated Convergence Theorem)

= 1

μ1 − λ1
E[r(t + Exp(μ1 − λ1))]. (31)

lim
β→0

�(t, β)

β
= lim

β→0

1 − γ2

β
E[r(t − I1)]

= 1

λ1
E[r(t − I1)]. (32)

lim
β→0

�(t, α∗)
β

=
∫ t

α∗
lim
β→0

e−λ1(1−γ1)(t−s)λ1
1

β

Cost(s, β)ds
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=
∫ t

α∗
lim
β→0

λ1
1

β

Cost(s, β)ds because γ1 → 1

= λ1

μ1 − λ1

∫ t

α∗
E[r(s + Exp(μ1 − λ1))]ds. (33)

lim
β→0

1 − E[γ M
1 ]

β
= lim

β→0

1 − e−λ1(t−α∗)(1−γ1)

β

= λ1(t − α∗) lim
β→0

1 − γ1

β
L’Hospital’s rule

= λ1(t − α∗) 1

μ1 − λ1
. (34)

lim
β→0

βUβ(α∗ − I1)

= lim
β→0

β

1 − γ1γ2

(
1

β
�(α∗, β) + γ2

1

β

Cost(α∗, β)

)

=(μ1−λ1)λ1

(
1

λ1
E[r(α∗−I1)]+ 1

μ1−λ1
E[r(α∗+Exp(μ1−λ1))]

)

= (μ1 − λ1)E[r(α∗ − I1)] + λ1E[r(α∗ + Exp(μ1 − λ1))]. (35)

��

4.3.3 Proving claim 1

Finally, we derive the expected terms in Lemma 4.6 by taking the limit β → 0 in the
	β terms, which can be characterized using the Uβ terms.

Lemma 4.14 The expected terms in Lemma 4.6 have the expressions given in (36),
(37) and (38).

Proof Define B1 := BP[S1; λ; S], B2 := BP[S2; λ; S], BW := BP[Ŵ (t1 −
α∗); λ; S].

Since 	β(t,W ) can be seen as the total cost incurred during the first BP[W ; λ; S]
time, we have that

Uβ(t1) = 	β(t1, S1 + S2 + Ŵ (t1 − α∗)) + B̃1(β)B̃2(β)B̃W (β)Uβ(α∗ − I1),

Uβ(t1) = 	β(t1, S1 + Ŵ (t1 − α∗)) + B̃1(β)B̃W (β)Uβ(α∗ − I1),

Uβ(t1 − I1) = 	β(t1 − I1, S2 + Ŵ (t1 − α∗)) + B̃2(β)B̃W (β)Uβ(α∗ − I1),

where B̃(β) = E[e−βB] is the expected discount factor after a busy period B.
Now we take the limit β → 0 and use Lemma 4.11 and Lemma 4.13.
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E

[∫ BP[S1+S2+Ŵ (t1−α∗);λ,S]

0
r(α∗ + A(t)) dt

∣∣∣A(0) = t1 − α∗
]

= lim
β→0

	β(t1, S1 + S2 + Ŵ (t1 − α∗))

= lim
β→0

Uβ(t1) − B̃1(β)B̃2(β)B̃W (β)Uβ(α∗ − I1)

= lim
β→0

1

β

( 
Cost(t1, β)+γ1�(t1, α
∗)

)+
(
E[γ M+1

1 ]−B̃1(β)B̃2(β)B̃W (β)
)
Uβ(α∗−I1)

= 1

μ1 − λ1
E[r(t1 + Exp(μ1 − λ1))] + λ1

μ1 − λ1

∫ t1

α∗
E[r(s + Exp(μ1 − λ1))]ds

+ lim
β→0

(
1 − B̃1(β)B̃2(β)B̃W (β)

β
− 1 − γ1E[γ M

1 ]
β

)

βUβ(α∗ − I1)

= 1

μ1 − λ1
E[r(t1 + Exp(μ1 − λ1))] + λ1

μ1 − λ1

∫ t1

α∗
E[r(s + Exp(μ1 − λ1))]ds

+
(

E[B1 + B2 + BW ] − λ1(t1 − α∗) 1

μ1 − λ1

− 1

μ1 − λ1

)
lim
β→0

βUβ(α∗ − I1). Lemma 4.12 (36)

Similarly, we have that

E

[∫ BP[S1+Ŵ (t1−α∗);λ,S]

0
r(α∗ + A(t)) dt

∣
∣∣A(0) = t1 − α∗

]

= lim
β→0

	β(t1, S1 + Ŵ (t1 − α∗))

= lim
β→0

Uβ(t1) − B̃1(β)B̃W (β)Uβ(α∗ − I1)

= lim
β→0

1

β

( 
Cost(t1, β) + γ1�(t1, α
∗)

) +
(
E[γ M+1

1 ] − B̃1(β)B̃W (β)
)
Uβ(α∗ − I1)

= 1

μ1 − λ1
E[r(t1 + Exp(μ1 − λ1))] + λ1

μ1 − λ1

∫ t1

α∗
E[r(s + Exp(μ1 − λ1))]ds

+ lim
β→0

(
1 − B̃1(β)B̃W (β)

β
− 1 − γ1E[γ M

1 ]
β

)

βUβ(α∗ − I1)

= 1

μ1 − λ1
E[r(t1 + Exp(μ1 − λ1))] + λ1

μ1 − λ1

∫ t1

α∗
E[r(s + Exp(μ1 − λ1))]ds

+
(

E[B1 + BW ] − λ1(t1 − α∗) 1

μ1 − λ1
− 1

μ1 − λ1

)
lim
β→0

βUβ(α∗ − I1).

Lemma 4.12 (37)
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E

[∫ BP[S2+Ŵ (t1−α∗);λ,S]

0
r(α∗ + A(t)) dt

∣
∣∣A(0) = t1 − α∗ − I1

]

= lim
β→0

	β(t1 − I1, S2 + Ŵ (t1 − α∗))

= lim
β→0

Uβ(t1 − I1) − B̃2(β)B̃W (β)Uβ(α∗ − I1)

= lim
β→0

1

β
�(t1, α

∗) +
(
E[γ M

1 ] − B̃2(β)B̃W (β)
)
Uβ(α∗ − I1)

= λ1

μ1 − λ1

∫ t1

α∗
E[r(s + Exp(μ1 − λ1))]ds

+ lim
β→0

(
1 − B̃2(β)B̃W (β)

β
− 1 − E[γ M

1 ]
β

)

βUβ(α∗ − I1)

= λ1

μ1 − λ1

∫ t1

α∗
E[r(s + Exp(μ1 − λ1))]ds

+
(

E[B2 + BW ] − λ1(t1 − α∗) 1

μ1 − λ1

)
lim
β→0

βUβ(α∗ − I1).

Lemma 4.12 (38)

��
We list here one more lemma in [15] that will be useful.

Lemma 4.15 (r ′) The derivative of r is given by

r ′(t) = c′(t) + λ1c(t).

Proof See Lemma 4.16 in [15]. ��
Now we are ready to prove Claim 1.

Proposition 4.16 (Claim 1) For all t1 � α∗, t2 � 0,

μ1(V (t1, t2) − V (t1 − I1, t2)) � μ2(V (t1, t2) − V (t1, t2 − I2)).

Furthermore, the inequality is an equality when t1 = α∗.

Proof By Lemma 4.6, it suffices to show that

μ1

(
E

[∫ BP[S1+S2+Ŵ (t1−α∗);λ,S]

0
r(α∗ + A(t)) dt

∣
∣∣A(0) = t1 − α∗

]

− E

[∫ BP[S2+Ŵ (t1−α∗);λ,S]

0
r(α∗ + A(t)) dt

∣∣∣A(0) = t1 − α∗ − I1

] )

� μ2

(
E

[∫ BP[S1+S2+Ŵ (t1−α∗);λ,S]

0
r(α∗ + A(t)) dt

∣∣∣A(0) = t1 − α∗
]
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− E

[∫ BP[S1+Ŵ (t1−α∗);λ,S]

0
r(α∗ + A(t)) dt

∣
∣∣A(0) = t1 − α∗

] )
. (39)

By Lemma 4.14, we have that the left hand side is equal to

μ1

(
E

[∫ BP[S1+S2+Ŵ (t1−α∗);λ,S]

0
r(α∗ + A(t)) dt

∣∣∣A(0) = t1 − α∗
]

− E

[∫ BP[S2+Ŵ (t1−α∗);λ,S]

0
r(α∗ + A(t)) dt

∣
∣∣A(0) = t1 − α∗ − I1

] )

=μ1

(
1

μ1−λ1
E[r(t1+Exp(μ1−λ1))]+

(
E[B1]− 1

μ1−λ1

)
lim
β→0

βUβ(α∗−I1)

)
.

(40)

Also, the right hand side of (39) is equal to:

μ1

(
E

[∫ BP[S1+S2+Ŵ (t1−α∗);λ,S]

0
r(α∗ + A(t)) dt

∣∣
∣A(0) = t1 − α∗

]

− E

[∫ BP[S1+Ŵ (t1−α∗);λ,S]

0
r(α∗ + A(t)) dt

∣∣∣A(0) = t1 − α∗
] )

= μ2E[B2] lim
β→0

βUβ(α∗ − I1). (41)

Note that E[B1] = E[S1]
1−ρ

= 1
μ1(1−ρ)

, E[B2] = 1
μ2(1−ρ)

. Thus we have that (39) is
equivalent to

μ1

μ1 − λ1
E[r(t1 + Exp(μ1 − λ1))] � 1

μ1 − λ1
lim
β→0

βUβ(α∗ − I1).

Now using Lemma 4.13, the above is equivalent to

μ1E[r(t1+Exp(μ1−λ1))] � (μ1−λ1)E[r(α∗ − I1)]+λ1E[r(α∗ +Exp(μ1−λ1))].
(42)

Using Lemma 3.6, we have that

E[r(t1 + Exp(μ1 − λ1))]
= r(α∗) + 1

μ1 − λ1
E[r ′(t1 + Exp(μ1 − λ1))],

= r(t1) + 1

μ1 − λ1

(
E[c′(t1 + Exp(μ1 − λ1))] + λ1E[c(t1 + Exp(μ1 − λ1))]

)

Lemma 4.15

= r(t1) + E[c(t1 + Exp(μ1 − λ1))] − c(t1) + 1

μ1 − λ1
λ1E[c(t1 + Exp(μ1 − λ1))]
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= r(t1) + μ1

μ1 − λ1
E[c(t1 + Exp(μ1 − λ1))] − c(t1) (43)

E[r(t1 − I1)] = r(t1) − 1

λ1
E[r ′(t1 − I1)]

= r(t1) − 1

λ1

(
E[c′(t1 − I1)] + λ1E[c(t1 − I1)]

)
Lemma 4.15

= r(t1) − (c(t1) − E[c(t1 − I1)]) − E[c(t1 − I1)] Lemma 3.6

= r(t1) − c(t1). (44)

Note that by (4), we have that E[c(α∗ + Exp(μ1 − λ1))] = 0. Thus we have that

E[r(α∗ − I1)] = E[r(α∗ + Exp(μ1 − λ1))].
Therefore, (42) is equivalent to

E[r(t1 + Exp(μ1 − λ1))] � E[r(α∗ + Exp(μ1 − λ1))].

This inequality holds because for any s � α∗,

d

ds
E[r(s + Exp(μ1 − λ1))]

= E[r ′(s + Exp(μ1 − λ1))] (Dominated Convergence Theorem)

= E[c′(s + Exp(μ1 − λ1))] + λ1E[c(s + Exp(μ1 − λ1))] (Lemma 4.15)

� 0 + λ1E[c(α∗ + Exp(μ1 − λ1))] (c is non-decreasing)

= 0.

��

4.4 Verifying claim 2

Finally, we use induction to prove Claim 2.

Proposition 4.17 (Claim 2) For all t1 ∈ [0, α∗], t2 � 0,

μ1(V (t1, t2) − V (t1 − I1, t2)) � μ2(V (t1, t2) − V (t1, t2 − I2)).

Proof Define function g(t1, t2) := μ1(V (t1, t2) − V (t1 − I1, t2)) − μ2(V (t1, t2) −
V (t1, t2 − I2)). We next show that g(t1, t2) � 0 by induction on t1.

We know equality holds at t1 = α∗ by Claim 1 (Proposition 4.16). Now assume
that for some t1 � α∗, we have that for all t2 � 0, g(t1, t2) � 0. We are going to
show that there exists a 
 > 0 which does not depend on t1, such that for any t1 and
δ ∈ (0,
), we have that for all t2 � 0,

g(t1 − δ, t2) � 0.
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We unfold the states from (t1 − δ, t2) by a δ time-step, and use the inductive
hypothesis.

V (t1 − δ, t2) = r(t1 − δ)δ + (1 − μ2δ)V (t1, t2 + δ)

+ μ2δ V (t1, t2 + δ − I2) + o(δ), (45)

= r(t1 − δ)δ + V (t1, t2 + δ) − μ2δ(V (t1, t2 + δ)

− V (t1, t2 + δ − I2)) + o(δ), (46)

V (t1 − δ − I1, t2) = r(t1 − δ − I1)δ + (1 − μ2δ)V (t1 − I1, t2 + δ)

+ μ2δ V (t1 − I1, t2 + δ − I2) + o(δ) (47)

V (t1 − δ, t2 − I2) = e−λ2t2V (t1 − δ,−I2) + (1 − e−λ2t2)V (t1 − δ, t2 − Ī2) + o(δ),

=r(t1−δ)δ+e−λ2t2 ((1−μ1δ)V (t1, δ−I2)+μ1δ V (t1−I1, δ−I2))

+ (1 − e−λ2t2)
(
(1 − μ2δ)V (t1, t2 − Ī2 + δ)

+ μ2δ V (t1, t2 − Ī2 + δ − I2)
)

+ o(δ),

= r(t1 − δ)δ + V (t1, t2 + δ − I2)

− e−λ2t2 · μ1δ (V (t1, δ − I2) − V (t1 − I1, δ − I2))

− (1 − e−λ2t2) · μ2δ
(
V (t1, t2+δ− Ī2)−V (t1, t2 + δ − Ī2 − I2)

)

+ o(δ),

� r(t1 − δ)δ + V (t1, t2 + δ − I2)

− e−λ2t2 · μ1δ (V (t1, δ − I2) − V (t1 − I1, δ − I2))

−(1−e−λ2t2) · μ1δ
(
V (t1, t2+δ − Ī2) − V (t1−I1, t2+δ− Ī2)

)

+ o(δ), (by induction hypothesis)

= r(t1 − δ)δ + V (t1, t2 + δ − I2)

− μ1δ (V (t1, t2 + δ − I2) − V (t1 − I1, t2 + δ − I2)) + o(δ).
(48)

where Ī2 ∼ [I2|I2 < t2]. Therefore, from Equations (45) and (47), we have that

μ1(V (t1 − δ, t2) − V (t1 − δ − I1, t2)) = μ1c(t1 − δ)δ + μ1(1 − μ2δ)(V (t1, t2 + δ)

−V (t1−I1, t2+δ))+μ1μ2δ (V (t1, t2+δ − I2) − V (t1 − I1, t2 + δ − I2)))

+ o(δ), (49)

And from Equations (46) and (48), we have that

μ2(V (t1 − δ, t2) − V (t1 − δ, t2 − I2))

� μ2(V (t1, t2 + δ) − V (t1, t2 + δ − I2)) − μ2
2δ(V (t1, t2 + δ) − V (t1, t2 + δ − I2))

+ μ1μ2δ (V (t1, t2 + δ − I2) − V (t1 − I1, t2 + δ − I2)) + o(δ) (50)

= μ2(1 − μ2δ)(V (t1, t2 + δ) − V (t1, t2 + δ − I2))
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+ μ1μ2δ (V (t1, t2 + δ − I2) − V (t1 − I1, t2 + δ − I2))) + o(δ). (51)

Combining Equations (49) and (51), we have that

g(t1 − δ, t2) � μ1c(t1 − δ)δ + (1 − μ2δ)g(t1, t2) + o(δ).

Since we have that E[c(α∗ +Exp(μ1 − λ1))] = 0 and that c is non-decreasing, we
have that c(t1 − δ) � c(α∗) < 0.4 Thus we have that

g(t1 − δ, t2) � μ1c(α
∗)δ + (1 − μ2δ)g(t1, t2) + o(δ)

� μ1c(α
∗)δ + o(δ). (by induction hypothesis)

Observe that the right hand side of the inequality is o(δ) plus a linear function
with respect to δ, where the coefficient of the linear function is a negative constant
independent of t1. Therefore, we can pick 
 small enough (and independent of t1)
such that for any δ ∈ (0,
), the right hand side is smaller than 0.

��

5 Simulations

We now conduct simulations to evaluate the performance of our LookAhead policy
fromTheorem 1.1).We experiment with different holding cost functions, system loads
and arrival rates.

We present our results in the form of 2 experiments. The experiment correspond
to a different set of holding cost, arrival and service rate parameters for the two job
classes. In each setting, we compare our LookAhead policy with a number of heuristic
policies which have been proposed for TVHC problems. We draw this comparison
across system loads, while maintaining a fixed ratio of arrival rates from each class.

Via simulation, we demonstrate the following main findings:

• Our policy is not just provably optimal, it also achieves significantly (41-56% in
Fig. 8) lower time-average holding cost than other policies.

• Depending on the cost functions, our policy may achieve arbitrarily lower holding
cost than other heuristics.

5.1 Policies evaluated

Throughout this section, when we talk about “our policy,” we refer to our LookAhead
policy from Theorem 1.1, where the priority of a class i job of age t is given by Vi (t):

V1(t) = μ1E[c1(t + X)], where X ∼ Exp(μ1 − λ1), and V2(t) = μ2c2.

4 Here we can assume c(α∗) is strictly negative. Otherwise we have that for any t > α∗, c(t) = 0. This
falls back to the case when P-Prio(2; 1) is optimal (similar to the arguments at the beginning of Sect. 4).
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We compare our policy against the following alternatives:

• FCFS: This policy always serves the job that arrived earliest. FCFS is a very
simple policy and we compare against it as a baseline.

• Strict Priority: This policy assigns a fixed priority to each job class, where jobs
from a higher-priority class have preemptive priority over those from a lower-
priority class. Jobs within a class are run in FCFS order. In our plots, we present
the point-wise better of P-Prio(1; 2) and P-Prio(2; 1), where P-Prio(1; 2) denotes
a preemptive priority policy where class 1 has strict priority over class 2.

• Generalized cμ Rule [5]: This policy always serves the job with highest index
ci (t) · μi , where t is the age of the class i job. Namely,

V1(t) = μ1c1(t), and V2(t) = μ2c2.

This policy is known to be optimal in the diffusion limit.
• Aalto’s Whittle Index Policy [13]: In this policy a class i job of age t is given
index Vi (t), where

V1(t) = μ1E[c1(t + S1)], where S1 ∼ Exp(μ1), and V2(t) = μ2c2.

This is another Whittle-based heuristic proposed for TVHC in the literature. It
also incorporates a LookAhead-like intuition; however, it looks ahead by a shorter
time period.

Note that all the above policies, except FCFS belong to the class of Overtake poli-
cies. The strict priority policies, P-Prio(1 : 2) and P-Prio(2 : 1) can be represented
as Overtake(0) and Overtake(∞), respectively. Generalized cμ, Aalto and our pol-
icy each have positive finite overtake times, with Generalized cμ having the highest
overtake time and our policy having the lowest. Only our policy’s overtake time varies
with load. Our overtake amount decreases with increasing load, which makes sense
since when load increases, we want to overtake sooner so we don’t end up with very
high holding costs. In the limit of light load, our policy equals Aalto’s policy.

Note also that time-average total holding cost is convex in overtake age, as shown
in Fig. 6 and proved in Theorem 3.8. Our policy is at the minimum of this convex
function. Aalto, generalized cμ and P-Prio(2; 1) are to its right; thus, their costs are
always ordered from lowest to highest. P-Prio(1; 2), being on the left of the minimum,
may perform better or worse than the policies on the right.

5.2 Experimental results

The two experiments are chosen to highlight settings where different policies are supe-
rior. In both settings, our policy performs significantly better than the other heuristics.
Each experiment shown is represented by (a) a set of holding cost functions (not drawn
to scale); (b) the effective overtake time corresponding to each of the candidate poli-
cies (except FCFS which is not an Overtake policy); and (c) the time-average total
holding cost obtained by all policies in simulation.
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Fig. 6 Expected cost is convex
in overtake age. The minimum is
achieved by LookAhead

In Fig. 7, we show an experiment with a quadratic holding cost function for class
1. As shown in Fig. 7a, class 1 holding cost is initially 0 but grows quadratically to
surpass class 2’s holding cost. When we move to Fig. 7c, we see that FCFS always
has a very high holding cost. Strict priority (Prio) is initially the worst policy, but it
becomes optimal at high load, when it is P-Prio(1; 2). The generalized cμ rule and
Aalto’s policy both start out behaving well at lower loads, but are over 20% worse
than our policy at high loads. Finally, in Fig. 7d, we validate the statistical significance
of the observed performance differences under high load. To account for the strong
correlation in cost variation across policies (due to shared sample paths), we plot the
time-average total holding cost ratio of each policy relative to ours with 2σ error bars
computed across 10 distinct sample paths. As depicted, our policy obtains consistently
lower time-average total holding cost across sample paths.

We can understand the above results by looking at the overtake age under each
of the above policies, as shown in Fig. 7b. Recall from Fig. 6 that the time-average
holding cost is convex in the overtake age. Recall also that Aalto and the generalized
cμ rule are to the right of our policy, which achieves the minimum cost. Thus it makes
sense that Aalto always performs better than the generalized cμ rule in Figs. 7c and
7d.

Further, for quadratic holding cost functions, we can analytically compute the
LookAhead index functions, and thus the optimal overtake ages as well. The class
1 index function is quadratic in E[X ] = 1

μ1−λ1
. Meanwhile the class 2 index function

is constant. Thus the optimal overtake age, which is the crossing point of the 2 func-
tions, can be derived as the root of a quadratic function. For the particular parameters
in Fig. 7a, we have

α∗(ρ) = −1

1 − 0.9ρ
+

√

90 − 1

(1 − 0.9ρ)2

This explains the rapid decrease in the optimal overtake age. For ρ � 0.95, the root of
this polynomial is negative, but overtake age is constrained to be non-negative. Thus
optimal overtake age is zero for ρ � 0.95.

In Fig. 8, we show an experiment with a deadline-based holding cost function for
class 1. As shown in Fig. 8a, a class 1 job at age t incurs instantaneous holding cost c1
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Fig. 7 Comparison of policies on a settingwith quadratic holding costs.Wefixμ1 = 1, μ2 = 3, λ1 = 0.75λ

past its deadline d1. The corresponding time-average total holding costs obtained by
the policies is shown in Fig. 8c. Here as well, FCFS always accrues highest holding
cost. Strict priority is initiallyworse than generalized cμ andAalto, but is slightly better
than Aalto at high load. Our policy does significantly better than all other policies.
At load 0.9, it is 56% better than Aalto, which is the best of all other heuristics. At
load 0.95, it is 41% better than strict priority, which is the best of all other heuristics.
We plot performance with error bars in Fig. 8d to test the statistical significance of
our policy’s performance. Here again, we plot the cost ratio of each policy relative
to ours with 2σ error bars computed across 10 distinct sample paths. As depicted,
our policy obtains consistently lower time-average total holding cost across sample
paths. As depicted, the cost ratio of generalized cμ and Aalto’s heuristic are higher
at intermediate loads. They become closer to optimal as we approach heavy traffic in
this example.

To understand what’s happening, we examine the corresponding overtake ages
shown in Fig. 8b. The optimal overtake age decreases with increasing load. However
in this setting, it decreases slowly. At load 0, the optimal overtake age is 8.87 (the
same as Aalto’s overtake age). At load 0.98 (which is the highest load we simulate),
the optimal overtake time is 5.71. In fact, in this setting with deadline-based holding
costs as well, we can analytically express our LookAhead index functions. This helps
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Fig. 8 Comparison of policies on holding cost functions with one deadline. We fix μ1 = 3, μ2 = 1, λ1 =
0.9λ

us derive the optimal overtake age as a function of load to be

α∗(ρ) = d1 − ln

(
μ1c1
μ2c2

)
· 1

μ1 − λ1
= 10 − ln(30)

3 − 9
4ρ

.

Note that limρ→1 α∗(ρ) = 10− 4
3 ln(30) ≈ 5.465, not zero. Namely, the LookAhead

amount and optimal overtake parameter α∗ both remain finite in the limit of heavy
traffic. Thus none of the other candidate policies (generalized cμ, Aalto’s heuristic
and strict priority) is optimal in the limit of heavy traffic. This example points out that
generalized cμ is only optimal when we assume both the diffusion limit and the limit
of heavy traffic. It is not optimal simply under heavy traffic.

6 Conclusion

This paper derives the first optimal scheduling policy for a TVHC problem with
two classes of jobs, where one class has a holding cost that increases as jobs age.
The policy derived, called LookAhead, has a similar form to the generalized cμ rule
but incorporates the holding cost of a job at a future time X : The index functions
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(for class 1 and 2) are, respectively, V1(t) = μ1E[c1(t + X)], and V2(t) = μ2c2,
where X ∼ Exp(μ1 − λ1). Our policy is not only optimal but also shows non-trivial
improvement over existing policies.

This work opens up promising avenues for future work. First, the TVHC problem
is an important but still widely open problem. While our work provides an optimality
proof for one simple case of TVHC, we hope that our amortized holding cost intuition
from Sect. 3.5 can be useful in more general TVHC instances. Second, there is a large
community that works on multi-armed bandit problems. Our work can be viewed as
providing an optimality result within the very challenging class of restlessmulti-armed
bandit problems. This work can hopefully spur on the discovery of more optimality
results within the class of restless multi-armed bandit problems.
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