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Abstract

Scheduling a stream of jobs whose holding cost changes over time is a classic and practi-
cal problem. Specifically, each job is associated with a holding cost (penalty), where a job’s
instantaneous holding cost is some increasing function of its class and current age (the time
it has spent in the system since its arrival). The goal is to schedule the jobs to minimize the
time-average total holding cost across all jobs.

The seminal paper on this problem, by Van Mieghem in 1995 [24], introduced the generalized
cµ rule for scheduling jobs. Since then, this problem has attracted significant interest but remains
challenging due to the absence of a finite-dimensional state space formulation. Consequently,
subsequent works focus on more tractable versions of this problem.

This paper returns to the original problem, deriving a heuristic that empirically improves
upon the generalized cµ rule and all existing heuristics. Our approach is to first translate the
holding cost minimization problem to a novel Restless Multi-Armed Bandit (R-MAB) problem
with a finite number of arms. Based on our R-MAB, we derive a novel Whittle Index policy,
which is both elegant and intuitive.

1 Introduction

Since the seminal paper by Van Mieghem in 1995 [24], the problem of scheduling jobs with Time-

Varying Holding Cost (the TVHC problem) has been an important topic in the operations literature:

In a single-server multi-class system with k classes of jobs, each job incurs a (time-varying) holding

cost for every unit of time it remains in the system, and the goal of the scheduling policy is to

minimize the time-average total holding cost across all jobs. Specifically, define the age of a job

to be the time it has spent in the system since it arrived. For a job of class i, let ciptq be the

instantaneous holding cost when the job’s age is t. We allow different classes to have different

holding-cost functions (see Figure 1), but assume these functions are non-decreasing. Note that

non-decreasing instantaneous holding cost is equivalent to convex accumulated holding cost, which

is assumed in [24] and all its follow-on works. Also, throughout this paper, we assume that job

sizes are exponentially distributed unless otherwise specified, and we assume that the job arrival

process is Poisson. Let λi and µi, respectively, denote the arrival rate and the completion rate of

class i jobs.

In the special case when the holding cost of each class is a constant function (where ciptq “ ci), the

optimal policy is the famous cµ rule, which always (preemptively) runs the job with the highest
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product ci ¨ µi [9, 8]. However, in the general case, this problem is much more complicated and

the optimal policy is not known. In [24], an analogue of the cµ rule is proposed, which is now

commonly referred to as the generalized cµ rule: The priority of a job is given by the product of its

instantaneous holding cost, ciptq, and its instantaneous failure rate µiptq. While the generalized cµ

rule is defined for general job sizes in [24], if the job sizes are exponentially distributed, the failure

rate for class i is just µi. We discuss the generalized cµ rule in Section 1.1.

Note that both the generalized cµ rule and the cµ rule are index policies: Each job has an index

(in both cases the value ciptqµiptq) which is a function of only the job’s state, and the policy always

serves that job with the highest index. Index policies are both simple and powerful. This paper

aims to solve the TVHC problem within the class of preemptive index policies, yielding a heuristic

solution to the problem in general. We now review the literature, and motivate our approach.

1.1 The generalized cµ rule

The generalized cµ-rule has been shown to be asymptotically optimal for M/G/1 queues in the

diffusion limit regime, where both the arrival and service rates go to infinity (and the total load

goes to 1) [24]. Under the same diffusion limit, its analogues have also been shown to be asymp-

totically optimal for more complicated settings such as the multi-server setting and systems with

abandonment ([18, 4, 17]). However, outside of the diffusion limit regime, it is known that the

generalized cµ-rule can perform poorly. Here we give an example to illustrate this.

Consider a system with two classes of jobs: one with deadlines and one without. For deadline-

based jobs, the holding cost is zero before their deadline but becomes significantly higher once the

deadline is passed, while jobs without deadlines have a constant holding cost (see Figure 2). Assume

that both classes have job sizes following the same Exppµq distribution. Under the generalized cµ

rule, the system grants priority to deadline-based jobs only after they have missed their deadlines.

Intuitively, however, it might make more sense to prioritize these jobs before their deadline is

reached. Simulation results show that by prioritizing the deadline-based jobs before their deadline,

the overall holding cost can be substantially reduced in normal-traffic scenarios (see Figure 7b).

Thus, the generalized cµ rule can be highly suboptimal under normal traffic (even with exponential

job sizes), underscoring the need for a better scheduling policy.

(Instantaneous)
Holding Cost

Time in System

Class 1

Class 2

Class 3

Figure 1: Classes with different holding costs.

(Instantaneous)
Holding Cost

Time in System

Jobs with deadline

Jobs with constant 
holding cost

𝑑

Figure 2: Example: generalized cµ rule is suboptimal.
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1.2 Prior attempts to improve upon the generalized cµ rule

One of the difficulties in solving the TVHC problem lies in the fact that a job’s holding cost

depends on its age. Hence, we need to track the ages of all jobs in the system, which requires an

infinite-dimensional state space. As a result, the existing literature has considered more tractable

versions of the TVHC problem that have a finite-dimensional state space. Such a finite-dimensional

state space allows the authors to represent their problem as a finite-dimensional Markov Decision

Problem (MDP), or, more specifically, a Restless Multi-Armed Bandit problem (R-MAB) with a

finite number of arms. We provide a brief tutorial on R-MABs in Section 2.

One way to create a finite-dimensional state space for the TVHC problem is to assume a static

setting, where all n jobs are present at time 0 and there are no new arrivals. This is the approach

taken in [2, 1]. By limiting the number of jobs, the problem can now be translated to an n-arm

R-MAB. From this R-MAB the authors then derive a Whittle index, which determines which job

to run at every moment in time (see Appendix A for a tutorial on the Whittle index). Figure 3

shows a road-map of the solution. The drawback of the static version setting is that the arrival rate

(and consequently the load) of each class cannot be incorporated in the policy. This is unfortunate,

because, for example, in Figure 2, it is reasonable to expect that if load is higher, we might want

to start working on the deadline-oriented jobs sooner than we would under lower load.

Static Version
Translate to

R-MAB
Derive

The Whittle Index

Figure 3: A road-map to derive the Whittle Index policy for the static version of our problem: The static
version is first translated to a R-MAB problem. Then the Whittle Index is derived based on the R-MAB
problem.

Another way to create a finite-dimensional state space is to change the TVHC problem so that

individual jobs no longer have a holding cost. Instead, the total holding cost for class i is a function

of the number of class i jobs present, see [13, 5, 7, 16, 3, 15, 12]. With this change, one only

needs to track the number of jobs within each class, enabling the problem to be translated into

a finite-dimensional state space MDP or a k-arm R-MAB. Several papers, [3, 15, 12], next follow

the road-map in Figure 4 where they use the k-arm R-MAB to derive a Whittle index policy. This

queue-length holding cost setting is complementary to our age-based holding cost setting, as the

policy derived for one setting cannot be translated into a policy in the other setting.

Queue-Length
Version Translate to

R-MAB
Derive

The Whittle Index

Figure 4: A road-map used to derive the Whittle Index policy for the queue-length holding cost setting.

1.3 Our approach and contributions

The Whittle Index policy is known to be a good heuristic for R-MAB problems (see [19] for

a discussion). Like the prior work of Figures 3 and 4, we adopt a similar road-map to derive

the Whittle Index for our age-based holding cost minimization problem. Unfortunately, in our

problem we have infinite-dimensional state space which makes things much harder.1 First, while

1In fact, both papers on the static version [2, 1] note the analytical intractability of the dynamic age-based TVHC
setting.
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the translation to a tractable R-MAB is straightforward in prior works, it is hard to reduce our

problem to a finite-arm R-MAB. Second, as in all the prior works, even after reducing to an R-MAB

problem, we still need to derive the Whittle Index from the R-MAB, which requires overcoming

two obstacles: (i) establishing indexability, a key property of the R-MAB ensuring that the Whittle

Index is well-defined; and (ii) performing the actual derivation of the Whittle index, which can be

intricate.

In overcoming these difficulties, our paper makes two primary contributions, outlined in Figure 5:

First, Theorem 1 (see Section 3) translates the TVHC problem to a novel R-MAB problem. Second,

Theorem 2 (see Section 4) proves indexability and derives the Whittle Index for our R-MAB

problem, thus yielding a Whittle-based heuristic policy for our problem.

Our TVHC
Problem Translate to

R-MAB
Derive

The Whittle Index
THM 1 THM 2

Figure 5: Using Theorem 1 and Theorem 2, we follow this road-map to derive the Whittle Index policy.

Our final result is a Whittle-based policy which always preemptively runs the job with the highest

Whittle Index. The Whittle Index has an elegant and intuitive formulation given in Corollary 1

(see Section 4) and repeated here: Our Whittle Index for a class i job with age t, Wiptq, is given by

Wiptq “ µi ¨ E rcipt ` Xqs , where X „ Exppµi ´ λiq. (1)

Intuitively, while the generalized cµ rule focuses on the current holding cost ciptq and schedules

according to the index µiciptq, our Whittle index looks a little further into the future to age t`X.

Note that if the load is high (λi is close to µi), then we look further into the future. This aligns with

the motivating example in Figure 2, where it is preferable to prioritize a job before its deadline,

particularly when there are likely to be many jobs in the system.

It is also interesting to contrast our policy with the heuristic given in [1], which is the Whittle index

in the static version. Under exponential job sizes, their index has the form µi ¨E rcipt ` Y qs, where

Y „ Exppµiq. Note that our index given in (1) matches theirs when λi “ 0, where our setting

degenerates to the static setting. In Section 5 we compare our policy with all the existing heuristics

(including [1]). Our simulations show that our policy outperforms all the other heuristics.

2 Tutorial on (Markov) R-MAB Problem

In this paper, when we say MAB, we always refer to the Markov MAB: In a Markov MAB problem,

each arm corresponds to a Markov process with states that evolve based on an underlying state

transition model. The agent chooses to pull an arm at each time step, incurring a cost determined

by the states of the arms. The objective is to minimize the cumulative cost over time.

Mathematically, let k denote the number of arms. Each arm i is associated with a Markov Decision

Process (MDP), which is defined by a state space, the action space tactive, passiveu, the transition

probabilities given states and actions, and a cost function cipsq representing the cost incurred when

arm i is in state s. At each time step t, the agent observes the current states of all arms and selects

at most one arm to pull (pulling means choosing the action active). Cost is incurred for each arm,
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and the state of each arm evolves according to its respective MDP and actions. The objective is to

minimize the long-run average cost over an infinite time horizon.

A discounted MAB is defined exactly the same except for the objective. Instead of the long-run

average cost, a discounted MAB aims to minimize the cumulative discounted cost, where the cost

at time t is multiplied by e´αt, and α ą 0 is called the discount factor.

A MAB is called restful if the state of an arm does not evolve when the arm is not pulled (the

action is passive). In contrast, An MAB is called restless if the state evolves whether the arm is

pulled or not. For a restful MAB, the optimal policy is the Gittins index policy ([11, 22]), while

the optimal policy for restless MAB (R-MAB) is open. The TVHC problem is intrinsically restless.

3 Translation to a Discounted R-MAB

The main goal of this section is to complete the first step in the road-map (Figure 5), which is

the translation from the TVHC problem to a discounted R-MAB problem. First in Section 3.1,

we restate the TVHC problem setting, and prove that one should serve jobs within each class

in FCFS order. This fact allows us to only consider index functions that enforce FCFS within

each class, which we will see is essential for the translation to an R-MAB problem. Second in

Section 3.2, we prove our theorem which translates the TVHC problem to an R-MAB problem.

Finally in Section 3.3, a discount factor is introduced to the R-MAB problem. The discounted

R-MAB problem serves as the starting point of the typical Whittle Index approach. The Whittle

Index for the R-MAB without discounting is obtained by taking the limit on the discount factor

(see Section 3.3).

3.1 The TVHC problem

3.1.1 Problem setting

We briefly restate the TVHC problem setting as follows: In a single-server system, there are k

types of jobs. For each type i, we assume a Poisson arrival process with rate λi. We also assume

that the job size distribution is exponentially distributed with rate µi. For a type i job of age t, its

instantaneous holding cost is ciptq, which is a non-decreasing and smooth2 function. The objective

of the scheduler is to schedule the jobs in order to minimize the time-average mean holding cost.

Specifically, Let ctotalpsq denote the sum of the holding costs of all jobs currently in the system at

time s. Then the objective is to minimize E rHolding Costs, where

E rHolding Costs “ lim
tÑ8

1

t

ż t

s“0
ctotalpsqds.

To make the problem well-defined, we assume that there exists a policy to make the time-average

mean holding cost converge.

2We need smoothness to simplify our derivation. However, our policy applies to any holding cost function that
can be arbitrarily closely approximated by a smooth function (e.g., a deadline function, or any continuous function).
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3.1.2 Index functions

We only focus on index policies in this paper. These are policies where a job’s index (priority level)

only depends on its own state, not on the state of other jobs in the system. Specifically, since the

job sizes are exponential, a job’s index only depends on the job’s type and age and does not depend

on its attained service. Thus an index policy is specified by a set of functions tVip¨quki“1, where

Viptq is the index of a job of type i with age t.

3.1.3 FCFS within each class

Intuitively, since the holding cost is increasing and the job sizes are exponentially distributed, to

minimize mean holding cost, we should schedule jobs within each type in FCFS (First Come First

Serve) order , since earlier arriving jobs have higher cost. Mathematically, we have the following

lemma:

Lemma 3.1 (FCFS within each type is optimal). The optimal policy must serve jobs within each

type in FCFS order.

Proof. See Appendix B.

Motivated by Lemma 3.1, throughout this paper, we focus on index policies that enforce FCFS

order within each class. This is equivalent to having a non-decreasing index function for each class

with a FCFS tie-breaking rule. In Section 3.2, we will leverage the fact that the index functions

enforce FCFS within each class to substantially reduce the dimensionality of the state space.

3.2 Translation to an R-MAB problem

In this section, we translate the TVHC problem into an R-MAB problem. Intuitively, our key

idea is to let each arm of the R-MAB problem track the age of the oldest job within each class

in the TVHC problem. At first this seems insufficent, because we’re not capturing the state of all

the other jobs within each class. However we will show how the FCFS ordering within each class

ensures that the distribution of the ages of younger jobs can be effectively captured through the

stochastic behavior of the Poisson arrival process (a generally similar, yet distinct, idea is applied

to a different problem in [23]). Our key theorem is as follows:

Theorem 1 (Translation to an R-MAB). There exists an R-MAB problem, such that for any set of

non-decreasing index functions tVip¨quki“1, the corresponding index policies (breaking ties by FCFS)

in the TVHC problem and the R-MAB problem incur the same cost.

Proof Sketch. We construct a continuous R-MAB as follows.

• The R-MAB has k arms, each representing a class. There are two actions for each arm (active

or passive), where arm i is active means the oldest class i job is served, and passive means

the job served at this moment is of some other type.

• Arm state Tiptq: The ith arm’s state is Tiptq P R. The arm state can be interpreted in the

TVHC problem as the age of the oldest type i job at time t. If there is no type i job in

the system, Tiptq is negative, which means the next type i arrival happens ´Tiptq time later.

Note that for arm i, the action active is only allowed at time t when Tiptq is positive.
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• Transition Probability: If the action for arm i is passive, the ith arm state grows with rate

1. Otherwise if arm i is active, the ith arm state may drop an Exppλiq amount according to

a Poisson process (when completions happen). Mathematically, the transition function is

passive: dTiptq “ dt, active: dTiptq “ dt ´ X ¨ dNµiptq,

where X „ Exppλiq, and Nµi is a Poisson counting process with rate µi.

This transition function can be interpreted in the TVHC problem as follows: A passive action

means that the oldest class i job is not in service and its age grows with rate 1. If the action is

active, then in the next dt time period, the oldest class i job is served. There is a probability

of µidt that the job is completed and leaves the system, in which case the oldest class i job

in the system becomes the previously second-oldest class i job. Since the inter-arrival time

follows the distribution Exppλiq, the age of the oldest job drops by an Exppλiq amount.

• Constraint: The number of active arms at any time is at most 1.

• Cost Function ripsq: Arm i incurs a cost of ripsq at state s, where ripsq is defined to be

ripsq :“ cipsq ` E

«

Ni
ÿ

j“1

cipYjq

ff

, (2)

where Yj “
řj

m“1Xm, Xm „ Exppλiq, and Ni is the random variable such that YNi ă s and

YNi`1 ě s. For s ă 0, define ripsq “ 0.

To interpret (2), observe that ripsq represents the expected total instantaneous holding cost

of all class i jobs given that the age of the oldest class i job is s: Since the index policy serves

class i jobs in FCFS order, no “young” class i jobs (class i jobs younger than the current

oldest one) have been completed. Since the inter-arrival times are distributed as Exppλiq,

their ages are distributed as

s ´ X1, s ´ X1 ´ X2, . . . , s ´

Ni
ÿ

m“1

Xm.

Thus the expected total instantaneous cost of all the young class i jobs is E
”

řNi
j“1 cips ´ Yjq

ı

,

which is equal to E
”

řNi
j“1 cipYjq

ı

as the Ni arrivals are distributed as uniform order statistics

in p0, sq.

• Objective: The objective is to minimize the long-run expected cost. Mathematically,

Cost “ E

«

lim
xÑ8

1

x

ż x

0

k
ÿ

i“1

ripTiptqqdt

ˇ

ˇ

ˇ

ˇ

Tip0q “ 0

ff

.

Through the construction and the corresponding interpretation in the TVHC problem, it is straight-

forward to see a coupling between the ith arm state and the age of the oldest class i job in the

TVHC problem. However, although intuitive, it is delicate to rigorously prove that characterizing

the holding cost of all young jobs by expectation does not change the expected long-run mean cost.
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We refer to Appendix C for the rigorous proof, where we use a coupling argument over sample

paths to build equivalence between the two problems.

3.3 Introducing the discount factor

Finally, we introduce a discount factor into our R-MAB problem. It is a typical step before applying

the Whittle Index approach. The discounted objective is defined to be:

Costps0, αq “ E

«

ż 8

0

k
ÿ

i“1

ripTiptqq ¨ αe´αtdt

ˇ

ˇ

ˇ

ˇ

Tip0q “ s0piq

ff

, (3)

where s0 is the vector of the initial states and s0piq is the initial state of arm i.

By standard results in dynamic programming (e.g., [3, 21]), also known as the Wiener’s Tauberian

theorem, we have the following lemma:

Lemma 3.2. For any initial state s0,

lim
αÑ0

Costps0, αq “ Cost.

This lemma indicates that to get a good index for our R-MAB problem (and thus the TVHC

problem), it suffices to find a good index policy to optimize the discounted cost Costps0, αq, and

then take the limit α Ñ 0 on the index.

4 Derivation of the Whittle Index

Given the discounted R-MAB problem, we now perform the second part of the road-map of Figure 5:

the derivation of the Whittle Index. Our main theorem is Theorem 2. In Corollary 1 we obtain the

Whittle Index for our TVHC problem by taking the limit on the discount factor in Theorem 2.

The section is organized as follows: First in Section 4.1, we define the single-arm bandit formulation

and define the Whittle Index. Then in Section 4.2 we propose a guess of the Whittle Index. The

closed form of the guessed Whittle Index is derived in Section 4.3. Finally, we verify indexability

and that this guess of the Whittle Index is true in Section 4.4, hence proving Theorem 2.

In most parts of this section, we focus on the single-arm bandit problem, and we drop the subscript

i for simplicity. However, we should remember that there is an independent single-arm bandit

problem for each arm in our R-MAB problem, and the Whittle Index obtained from each single-

arm bandit problem serves as the index for each arm in the R-MAB problem.

4.1 Set up the Whittle Index approach

In this section, we set up the problem following the Whittle approach (see Appendix A for a

tutorial). We first define the single-arm bandit for class i where not pulling the arm is rewarded

with some compensation. Based on this single-arm bandit formulation, the Whittle Index is defined.

Formally, we drop the subscript i and redefine our problem as follows.
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• State and Action: As before, the state is denoted by T ptq. The action set is tactive, passiveu,

and “active” is only allowed at time t if T ptq ą 0.

• Transition Probability:

passive: dT ptq “ dt, active: dT ptq “ dt ´ X ¨ dNµptq, (4)

where X „ Exppλq, and Nµ is a Poisson counting process with rate µ.

• Passive Compensation ℓ: We define ℓ to be the compensation for a passive action. It is

further explained in the cost function below.

• Cost Function θps, aq : We define the cost incurred at state s and action a to be

θps, aq :“

#

α ¨ rpsq, if a “ active,

α ¨ rpsq ´ ℓ, if a “ passive,

where rpsq is defined as before:

rpsq :“ cpsq ` E

«

N
ÿ

j“1

cpYjq

ff

, (5)

where Yj “
řj

m“1Xm, Xm „ Exppλq, and N is the random variable such that YN ă s and

YN`1 ě s. For s ă 0, define rpsq “ 0.

• Objective: The objective is to minimize the discounted total holding cost. Mathematically,

let s0 denote the initial state. Then the discounted total holding cost is

Costps0, αq “ E

„
ż 8

0
θpT ptqq ¨ e´αtdt

ˇ

ˇ

ˇ

ˇ

T p0q “ s0

ȷ

.

A policy π takes a state T and outputs an action a, where a is active or passive. Thus we denote

a policy by a function π : p´8,8q Ñ t0, 1u where 1 means active. Note that any policy receiving

a negative state must return the passive action.

For any value of the compensation ℓ, consider the optimal policy of the single-arm bandit prob-

lem. Define Πpℓq to be the set of states where the passive action is optimal. Note that for any

compensation ℓ, any non-positive state is in Πpℓq.

Definition 4.1 (Π). For any compensation ℓ, define

Πpℓq :“ tt0 | passive action at state t0 is optimalu.

Throughout, we omit writing the discount factor α, to simplify notation.

Intuitively, the larger the compensation, the more likely it is that a passive action should be taken.

This property is called “indexability.”

Definition 4.2 (Indexability). A problem is indexable if for any ℓ1 ă ℓ2, we have Πpℓ1q Ď Πpℓ2q.
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The Whittle Index of a state is defined to be the smallest compensation such that the passive action

is optimal at this state. It can be intuitively understood as the value of compensation where active

and passive actions are both optimal.

Definition 4.3 (Whittle’s Index). The Whittle Index of a state t with discount factor α is defined

to be

W pt, αq :“ inf
ℓ

tt P Πpℓqu.

Notice that both indexability and the form of the Whittle Index involves understanding Πpℓq, which

requires us to understand the optimal policy of this single-arm bandit formulation. We follow these

steps to establish indexability and derive the Whittle Index: (i) We propose a guess of the optimal

policy, and accordingly define the guessed Whittle Index (Section 4.2); (ii) We compute the guessed

Whittle Index (Section 4.3); (iii) We verify indexability and that the guessed Whittle Index is the

true Whittle Index (Section 4.4).

4.2 A guess of the Whittle Index

Intuitively, it is reasonable to guess that the optimal policy is a threshold policy that chooses the

passive action for states smaller than the threshold and chooses active otherwise. Mathematically,

we define a threshold policy Thresholdpxq below:

Definition 4.4 (Thresholdpxq). A threshold policy, Thresholdpxq, parameterized by state x, selects

the passive action iff state t ă x.

For any threshold policy, denote its cost by the following notation:

Definition 4.5 (Cost of Thresholdpxq). For policy Thresholdpxq, define the discounted total hold-

ing cost given discount factor α, initial state s0 and compensation ℓ to be Costxps0, α, ℓq.

With the guess that a threshold policy is optimal, the following “guessedWhittle Index” is proposed.

Both guesses will be proven true in Section 4.4.

Definition 4.6 (Guessed Whittle’s Index). The guessed Whittle Index of state t0, xW pt0, αq, is the

value of the compensation ℓ such that the policy Thresholdpt0q is the optimal threshold policy for

initial state t0. Mathematically, define xW p0, αq “ 0 and for any t0 ą 0, define xW pt0, αq to be the

value of ℓ that satisfies 3

lim
δÑ0

Costt0pt0, α, ℓq ´ Costt0`δpt0, α, ℓq

δ
“ 0. (6)

Unfortunately, it is not easy to solve the guessed Whittle Index from (6). The whole next subsection

(Section 4.3) is devoted to solving (6).

3Intuitively, the optimal Threshold policy is the value of x that minimizes Costxpt0, α, ℓq. Differentiating yields
(6).
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4.3 The Guessed Whittle Index

In this section we will solve (6) for the guessed Whittle Index, resulting in Lemma 4.20. First we

introduce some notation. Then we analyze the cost of a threshold policy (Lemma 4.11) and give

a (complicated) expression for the guessed Whittle Index (Lemma 4.12). Finally, we show how to

simplify the expression to the elegant and simple formula in Lemma 4.20.

4.3.1 Notation

A short summary of the notation used is given in Table 1.

Table 1: Additional Notation Table

Notation Meaning

ĘCostpt0, αq The discounted cost incurred during an M/M/1 busy period

T1 T1 „ BPM{M{1, the length of an M/M/1 busy period
T2 T2 „ Exppλq

γi, i “ 1, 2 E
“

e´αTi
‰

Γpt0, αq E
”

şT2

0 αrpt0 ´ T2 ` tqe´αtdt
ı

X X „ Exp
´

α
1´γ1

¯

Definition 4.7 (ĘCost). In an M/M/1 queue, suppose a busy period starts at time 0, and the age of

the oldest job in the system is defined to be Aptq. Define T1 to be the first time such that Aptq ă 0

(which means there is no job in the system and the busy period ends). Define ĘCostpt0, αq to be the

expected discounted cost incurred during the busy period where the cost at time t is rpt0 ` Aptqq:

ĘCostpt0, αq :“ E

„
ż T1

0
rpt0 ` Aptqq ¨ αe´αtdt

ȷ

. (7)

Definition 4.8 (Γpt0, αq). Let T2 „ Exppλq. We define Γpt0, αq to be the expected discounted cost

during the interval rt0 ´ T2, t0s:

Γpt0, αq :“ E

„
ż T2

0
rpt0 ´ T2 ` tq ¨ αe´αtdt

ȷ

. (8)

Definition 4.9 (γ1, γ2). Define γ1 :“ E
“

e´αT1
‰

(where T1 „ BPM{M{1 is the length of an M/M/1

busy period) and γ2 :“ E
“

e´αT2
‰

(where T2 „ Exppλq).

We have the following lemma characterizing γ1 and γ2.

Lemma 4.10. γ1 and γ2 satisfy the following equations:

µ “
pα ` λ ´ λγ1qγ1

1 ´ γ1
, γ2 “

λ

λ ` α
. (9)

Proof. Since γ1 “ E
“

e´αT1
‰

“ ĂT1pαq, where T1 is the length of an M/M/1 busy period, we have
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the following equation from classic queueing theory (e.g., see Section 27.2 in [14]):

γ1 “
µ

µ ` α ` λ ´ λγ1
,

yielding the first equation. Likewise, the second equation comes from:

γ2 “ E
“

e´αT2
‰

“ ĂT2pαq “
λ

λ ` α
.

4.3.2 An expression for the guessed Whittle Index

Now we work on solving (6) for the guessed Whittle Index. In this subsection, through analyzing

the cost of a threshold policy (Lemma 4.11), a complicated expression for the guessed Whittle

Index is derived (Lemma 4.12).

We first analyze the cost incurred by the Thresholdpt0`δq policy. Recall that the cost of a threshold

policy is defined in Definition 4.5.

Lemma 4.11. For any δ ě 0, we have that

Costt0`δpt0, α, ℓq “
1

1 ´ γ1γ2

ˆ

δ ¨ pα ¨ rpt0q ´ ℓq ` e´αδ ¨ ĘCostpt0 ` δ, αq

` e´αδγ1 ¨
`

Γpt0 ` δ, αq ´ δαγ2rpt0q ´ ℓ ¨
1

α
p1 ´ γ2 ¨ eαδq

˘

˙

` opδq. (10)

Proof. We consider the state transition process of policy Thresholdpt0 ` δq from the initial state

t0 until the next time the state returns to t0. As shown in Figure 6, there are three phases:

Phase 1 (the r0, δs time period): The policy stays passive, and the cost incurred at every moment

is αrptq ´ ℓ. Thus the incurred discounted cost during phase 1 is

δ ¨ pα ¨ rpt0q ´ ℓq ` opδq. (11)

Phase 2 (the time from δ until the next time that the state is below t0 ` δ): Define T1 to be the

length of phase 2. Since the policy stays active from time δ, we know that the dynamics of

the state is exactly the same as that of the oldest age in an M/M/1 queue. Thus the time

period from δ until there is no job with age more than t0 ` δ is the length of a busy period

in an M/M/1, i.e.,

T1 „ BPM{M{1. (12)

Moreover, we know that the cost incurred during this time period is ĘCostpt0 ` δ, αq. Note

that there is a discount factor of e´αδ after phase 1. Thus the expected total discounted cost

incurred during phase 2 is

e´αδ ¨ ĘCostpt0 ` δ, αq. (13)

Phase 3 (time until the state returns to t0): At time T1 ` δ, the state drops from being above

t0 ` δ to below. Since the drop is exponential with rate λ (see (4)), we know that the state

12



at time T1 ` δ is lower than t0 ` δ by an exponential overshoot, which is Exppλq. We define

the state at T1 ` δ to be t0 ` δ ´ T2, where T2 „ Exppλq.

Now since the policy Thresholdpt0 ` δq stays passive when the state is smaller than t0 ` δ,

phase 3 lasts for T2 ´ δ time before the state returns to t0 (i.e., the age grows to t0). Thus

the total discounted cost incurred during phase 3 is

e´αpδ`T1q ¨

ż T2´δ

0
pαrpt0 ` δ ´ T2 ` tq ´ ℓqe´αtdt. (14)

𝑡!

Time

State

0

𝑡! + 𝛿 − 𝑇"

𝑇# + 𝛿𝛿

𝑡! + 𝛿 𝑡!

𝑇# + 𝑇"

Figure 6: Illustration state transition process.

After three phases, the state returns to t0. Thus summing up (11), (13), (14) and taking the

expectation gives the following equation:

Costt0`δpt0, α, ℓq “ δ ¨ pα ¨ rpt0q ´ ℓq ` opδq (15)

` e´αδ ¨ ĘCostpt0 ` δ, αq (16)

` e´αδE
“

e´αT1
‰

¨ E

„
ż T2´δ

0
pαrpt0 ` δ ´ T2 ` tq ´ ℓqeαtdt

ȷ

(17)

` E
“

e´αT1
‰

E
“

e´αT2
‰

Costt0`δpt0, α, ℓq. (18)

We can use the notation from Table 1 to simplify the terms. We can simplify line (17) as follows:

E

„
ż T2´δ

0
pαrpt0 ` δ ´ T2 ` tq ´ ℓqeαtdt

ȷ

“ E

„
ż T2

0
pαrpt0 ` δ ´ T2 ` tqqe´αt

ȷ

´ E

„
ż T2

T2´δ
pαrpt0 ` δ ´ T2 ` tqqe´αt

ȷ

´ ℓ ¨ E

„
ż T2´δ

0
e´αtdt

ȷ

“ Γpt0 ` δ, αq ´ E
“

δαrpt0qe´αT2 ` opδq
‰

´ ℓ ¨
1

α
p1 ´ E

”

e´αpT2´δq
ı

q

“ Γpt0 ` δ, αq ´ δαrpt0qγ2 ` opδq ´ ℓ ¨
1

α
p1 ´ γ2 ¨ eαδq.

Replacing (17) with the above equation, and rearranging terms, gives the proof.

We now use Lemma 4.11 to solve equation (6) to get the guessed Whittle Index.

Lemma 4.12. The guessed Whittle index with discount factor α is given by:

xW pt0, αq “
1

1 ´ γ1

´

αp1 ´ γ1γ2qrpt0q ` ĘCost
1
pt0, αq ´ αĘCostpt0, αq ` γ1Γ

1pt0, αq ´ αγ1Γpt0, αq

¯

.

(19)
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Proof. Note that (6) is equivalent to

dCostt0`δpt0, α, ℓq

dδ

ˇ

ˇ

ˇ

ˇ

δ“0

“ 0

The left hand side is the derivative of (10) with respect to δ. For simplicity, we omit the opδq term

and define

ĘCost
1
pt0, αq :“

dĘCostpt, αq

dt

ˇ

ˇ

ˇ

ˇ

t“t0

, and Γ1pt0, αq :“
dΓpt, αq

dt

ˇ

ˇ

ˇ

ˇ

t“t0

.

Now the derivative of (10) has the form:

dCostt0`δpt0, αq

dδ

ˇ

ˇ

ˇ

ˇ

δ“0

“
1

1 ´ γ1γ2

ˆ

αrpt0q ´ ℓ ` ĘCost
1
pt0, αq ´ αĘCostpt0, αq

` γ1
`

Γ1pt0, αq ´ αγ2rpt0q ` ℓ ¨ γ2
˘

´ αγ1

ˆ

Γpt0, αq ´ ℓ
1 ´ γ2

α

˙ ˙

.

Thus, (6) is equivalent to:

αp1 ´ γ1γ2qrpt0q ` ĘCost
1
pt0, αq ´ αĘCostpt0, αq ` γ1Γ

1pt0, αq ´ αγ1Γpt0, αq “ p1 ´ γ1q ¨ ℓ,

which yields:

ℓ “
1

1 ´ γ1

´

αp1 ´ γ1γ2qrpt0q ` ĘCost
1
pt0, αq ´ αĘCostpt0, αq ` γ1Γ

1pt0, αq ´ αγ1Γpt0, αq

¯

.

Since xW pt0, αq is defined to be the value of ℓ which satisfies (6), this gives the proof.

4.3.3 Simplifying the guessed Whittle Index

Lemma 4.12 gives a complicated expression for the guessed Whittle Index. In this subsection, we

work on simplifying Equation (19). The final result is an elegant formula for the guessed Whittle

Index (see Lemma 4.20). Since the proof is long and intricate, for the readers’ convenience, we give

a table summarizing each lemma below (Table 2).

The following lemma is a basic formula in ODE. We present it without proof.

Lemma 4.13 (First Order ODE). For the first order ODE, y1 `P pxqy “ Qpxq, the general solution

has the form

y “ e´
ş

P pxq dx

ˆ
ż

e
ş

P pxq dxQpxq dx ` C

˙

.

We also give a basic formula on exponential variables.

Lemma 4.14. For any smooth function f and exponential variable X, we have that

E rfpx0 ` Xqs ´ fpx0q “ E rXsE
“

f 1px0 ` Xq
‰

.
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Table 2: Lemmas in Section 4.3.3

Lemma number Summary

Lemma 4.13 A preliminary lemma on ordinary differential equations (ODE)
Lemma 4.14 A basic equation for exponential variables
Lemma 4.15 A necessary condition for the holding cost to converge
Lemma 4.16 Characterizing the cost function r
Lemma 4.17 Characterizing ĘCost
Lemma 4.18 Characterizing Γ
Lemma 4.19 Giving four equations using Lemma 4.14 and Lemma 4.16

fpx0q ´ E rfpx0 ´ Xqs “ E rXsE
“

f 1px0 ´ Xq
‰

.

Proof. Suppose X „ Exppθq. Then we have that

E rfpx0 ` Xqs ´ fpx0q “

ż 8

0
f 1px0 ` tqP rX ą ts dt “

ż 8

0
f 1px0 ` tqe´θtdt

“
1

θ

ż 8

0
f 1px0 ` tqθe´θtdt

“ E rXsE
“

f 1px0 ` Xq
‰

.

The other equation is derived similarly.

The next lemma is a necessary condition for the TVHC problem to be well-defined. It states that

the instantaneous holding cost cptq cannot grow too fast. This provides the basis for the proof of

Lemma 4.17. We present this lemma with the subscripts i, but will later drop all subscripts.

Lemma 4.15. If there exists a policy such that the long-run mean holding cost of the TVHC

problem converges, then for any type i, we have that

lim
tÑ8

şt
0 cipxqdx

epµi´λiqt
“ 0.

Proof. If the long-run mean holding cost converges, then it must also be the case that the long-run

mean holding cost converges if there are only type i jobs in the system, and all jobs are served in

FCFS order. In this case, the response time of each type i job is the response time in M/M/1,

which is distributed Exppµi ´ λiq.

Thus we have that the mean holding cost, which can be computed by the product of the arrival

rate and the expected accumulated holding cost per job, has the formula

λiE

„
ż A

0
cipxqdx

ȷ

,

where A „ Exppµi ´ λiq. If E
”

şA
0 cipxqdx

ı

converges, it is equal to:

ż 8

0
pµi ´ λiq

şt
0 cipxqdx

epµi´λiqt
dt. (20)
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Thus we know that limtÑ8

şt
0 cipxqdx

epµi´λiqt “ 0, otherwise expression (20) does not converge.

We now return to the single-arm bandit problem. We first need to characterize the cost function r

which is defined in (5).

Lemma 4.16 (r1). The derivative of r is given by

r1ptq “ c1ptq ` λcptq.

Proof. Note that in the definition of rpsq (Equation (5)), tYju can be viewed as the set of Poisson

arrivals with rate λ from time 0 to time s.

A Poisson arrival process from time 0 to t ` δ can be divided into two independent Poisson arrival

processes: the one from time 0 to t and another one from time t to t ` δ. Thus we have that

rpt ` δq “ cpt ` δq ` E

«

ÿ

j

cpYjq

ff

` E

«

ÿ

j

cpY 1
j q

ff

, (21)

where tYju is the Poisson arrivals during r0, ts, and tY 1
j u is the Poisson arrivals during rt, t ` δs.

The expected number of arrivals during rt, t` δs is λδ, and the instantaneous holding cost of those

jobs is approximately cpt0q. Thus E
”

ř

j cpY
1
j q

ı

“ cpt0q ¨ λδ ` opδq. This together with (21) yields:

r1pt0q “
rpt0 ` δq ´ rpt0q

δ
“ c1pt0q ` λcpt0q.

We now derive the expression of ĘCostpt, αq, which is defined in Definition 4.7.

Lemma 4.17 (Formula for ĘCost). For any t and α ą 0,

ĘCostpt, αq “ p1 ´ γ1qE rrpt ` Xqs , where X „ Exp

ˆ

α

1 ´ γ1

˙

(22)

Proof. Recall that ĘCostpt, αq is defined to be

ĘCostpt, αq :“ E

„
ż T1

0
αrpt ` Apsqqe´αsds

ȷ

,

where Apsq is the random variable denoting the age of the oldest job in an M/M/1 queue at time

s.

During the first δ time period, a job completes with probability µδ. If this happens, the state Apsq

drops by an exponential amount (Apδq “ δ ´ Exppλq). There are two cases: (1) with probability

e´λδ, the decrement is more than δ, which means Apδq ă 0 and the busy period ends; (2) with

probability 1´ e´λδ, the dropping amount is smaller than δ and the busy period continues. In this

case, suppose Apδq “ ∆ ă δ. Thus, conditioning on a drop happening in the first δ time, we have

that ĘCost is, with a slight abuse of notation:

“

ĘCostpt, αq | a drop happens in the first δ time
‰

“ αrptqδ `

´

1 ´ e´λδ
¯

e´αδ
ĘCostpt ` ∆, αq ` opδq.

(23)
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Otherwise, with probability 1 ´ µδ, no drop happens during the first δ time. Then Apsq starts at

δ, and experiences an M/M/1 busy period like process until it drops below δ. During this time,
ĘCostpt ` δ, αq is incurred. At the point that Apsq drops below δ, we know that Apsq is distributed

as δ ´ Exppλq because this is an exponential overshoot. Thus with probability e´λδ, Apsq is below

0, which means the busy period ends. Otherwise with probability 1´ e´λδ, Apsq is still larger than

0 (again, denoted by ∆) and the busy period continues. Thus the conditional value of ĘCost in this

case is

“

ĘCostpt, αq | no drops happen in the first δ time
‰

“ αrptqδ ` e´αδ
´

ĘCostpt ` δ, αq ` E
“

e´αT1
‰

p1 ´ e´λδqĘCostpt ` ∆, αq

¯

` opδq. (24)

Combining (23) and (24), we have that

ĘCostpt, αq “αrptqδ ` µδ
´´

1 ´ e´λδ
¯

e´αδ
ĘCostpt ` ∆, αq

¯

` opδq

` p1 ´ µδq

´

e´αδ
´

ĘCostpt ` δ, αq ` γ1p1 ´ e´λδqĘCostpt ` ∆, αq

¯¯

.

Thus we have that

lim
δÑ0

ĘCostpt ` δ, αq ´ ĘCostpt, αq

δ

“ ´ αrptq ´ lim
δÑ0

µ
´´

1 ´ e´λδ
¯

e´αδ
ĘCostpt ` ∆, αq

¯

` lim
δÑ0

1 ´ p1 ´ µδqe´αδ

δ
ĘCostpt ` δ, αq ´ lim

δÑ0
p1 ´ µδqe´αδγ1

1 ´ e´λδ

δ
ĘCostpt ` ∆, αq

“ ´ αrptq ` pµ ` αqĘCostpt, αq ´ λγ1ĘCostpt, αq

“ ´ αrptq ` pµ ` α ´ λγ1qĘCostpt, αq.

Note that this is a first-order ODE of the function ĘCostpt, αq with respect to t. By Lemma 4.13,

ĘCostpt, αq “ epµ`α´λγ1qt

ˆ
ż

´e´pµ`α´λγ1qsαrpsqds ` C

˙

. (25)

Note that by (9),

α ` µ ´ λγ1 “ α ´ λγ1 `
pα ´ λγ1 ` λqγ1

1 ´ γ1
“

α

1 ´ γ1
.

Thus (25) can be rewritten as

ĘCostpt, αq “ e
α

1´γ1
t
p

ż 8

t
e

´ α
1´γ1

s
αrpsqds ` Cq

“

ż 8

0
e

´ α
1´γ1

s
αrpt ` sqds ` Ce

α
1´γ1

t

“ p1 ´ γ1qE rrpt ` Xqs ` Ce
α

1´γ1
t
, (26)
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where X „ Expp α
1´γ1

q. Next we prove that C “ 0.

By Lemma 4.16, we have that

rptq “ cptq ` λ

ż t

0
cpxqdx ` C1.

Together with Lemma 4.15 (dropping the subscripts i), we have that

lim
tÑ0

rptq

epµ´λqt
“ 0.

From (26) we have that for any t,

|C| ď ĘCostpt, αqe
´ α

1´γ1
t

` p1 ´ γ1qE rrpt ` Xqs e
´ α

1´γ1
t
.

However, both terms on the right hand side go to zero as t Ñ 8 (see Lemma D.1 in Appendix D).

Thus we have proven that C “ 0. By Equation (26) we have the proof.

We now characterize another important term in (19), the function Γ.

Lemma 4.18 (Formula for Γ).

Γpt, αq “
α

α ` λ
E rrpt ´ T2qs . (27)

Proof. The proof is relatively straightforward:

Γpt, αq :“ E

„
ż T2

0
αrpt ´ T2 ` sqe´αsds

ȷ

“

ż 8

0

ż x

0
αrpt ´ x ` sqe´αsds λe´λxdx

“

ż 8

0

ż 8

s
αrpt ´ x ` sqe´αsλe´λxdxds

“

ż 8

0

ż 8

0
αrpt ´ yqe´αsλe´λpy`sqdyds

“

ż 8

0
rpt ´ yqλe´λydy ¨

ż 8

0
αe´pα`λqsds

“
α

α ` λ
E rrpt ´ T2qs .

Finally, we use the following lemma to simplify (19).

Lemma 4.19. Let T2 „ Exppλq, X „ Expp α
1´γ1

q. Then we have the following equations:

E
“

r1pt ´ T2q
‰

“ λcptq. (28)

E rrpt ´ T2qs “ rptq ´ cptq. (29)

E
“

r1pt ` Xq
‰

“
µ

γ1
E rcpt ` Xqs ´

α

1 ´ γ1
cptq. (30)

E rrpt ` Xqs “ rptq ´ cptq `
µp1 ´ γ1q

γ1α
E rcpt ` Xqs . (31)
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Proof. The equations follow from Lemmas 4.14 and 4.16. See Lemma D.2 in Appendix D.

Now substituting (22), (27), (28), (29), (30), (31) into the formula given in Lemma 4.12 gives the

desired simple guessed Whittle Index.

Lemma 4.20. The guessed Whittle Index given discount factor α is:

xW pt0, αq “ µE rcpt0 ` Xqs , where X „ Expp
α

1 ´ γ1
q. (32)

4.4 Indexability and the Whittle Index

We now use the guessedWhittle Index given in Lemma 4.20 to prove indexability and the correctness

of the guess. We only present the proof sketch here due to space limitations and defer the proof to

the appendix. However, we need to point out that, though deferred, the proof is also involved.

Theorem 2 (Indexability). The discounted single-arm bandit problem is indexable with the Whittle

Index W pt0, αq “ xW pt0, αq, where xW is the guessed Whittle Index given in Lemma 4.20.

Proof. The main lemma for this theorem is to prove that when the compensation ℓ “ xW pt0, αq, the

policy Thresholdpt0q is the optimal policy. This is proved by verifying the Hamilton–Jacobi–Bellman

equation. See Appendix E for the detailed proof.

Our final result is the Whittle Index for the scheduling problem. It is a straightforward corollary

of Theorem 2 by taking the limit on the discount factor and adding back the subscript i.

Corollary 1. The Whittle Index for the scheduling problem is

Wipt0q “ µE rcipt0 ` Xqs , where X „ Exppµi ´ λiq.

Proof. The formula is given by W pt0q “ limαÑ0
xW pt0, αq:

lim
αÑ0

α

1 ´ γ1
“ lim

αÑ0

α

1 ´ ĂT1pαq
“

1

´ĂT1
1
p0q

“
1

E rT1s
“ µ ´ λ.

Adding back the subscript i yields the Whittle Index.

5 Simulations

We conduct simulations to evaluate the performance of our proposed policy (from Corollary 1),

comparing it against other policies in the literature. In our evaluations, we experiment with different

numbers of classes, different holding cost functions, and a range of system loads. We present the

following main findings:

• Across all experiments, including cases with complex interleaving holding cost functions, our

policy consistently matches the lowest time-average holding cost among all candidate policies

we considered.

• In certain problem settings, our policy significantly outperforms each candidate policy.
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5.1 Policies evaluated

Throughout, when we talk about “our policy,” we will refer to the policy from Corollary 1 where

the priority of a class i job of age t is

Wiptq “ µiE rcipt ` Xqs , where X „ Exppµi ´ λiq

We compare our policy with a broad spectrum of alternative policies:

FCFS. This policy always serves the job that arrived earliest. FCFS is a very simple policy and

we compare against it as a baseline.

Strict Preemptive Priority. This policy assigns a fixed priority to each job class, where jobs

from a higher-priority class have preemptive priority over those from a lower-priority class.

Jobs within a class are run in FCFS order. We choose a highly optimistic version of this

policy where the priority ordering can change at each value of system load. Thus we might

run Prio(1;2), where class 1 has priority over class 2 when load is low, but Prio(2;1) when

load is high.

Generalized cµ [24]. This policy always serves the job with highest index ciptq ¨µi, where t is the

age of the class i job. This policy is known to be optimal in the diffusion limit.

Aalto’s Index [1]. In this policy a class i job of age t is given index Viptq, where
4

Viptq “ µiE rcipt ` Sqs , where S „ Exppµiq.

Like our policy, this is also a Whittle-index based heuristic, but is motivated by the static

setting (no arrivals), and hence does not incorporate the arrival rate λi.

5.2 Experimental Results

We have conducted hundreds of experiments comparing the scheduling policies from Section 5.1

under different holding cost functions, job sizes, and arrival rates. In all of these, our policy was

either the best policy or matched the best policy. Due to lack of space, we present only four diverse

experiments which well-illustrate some important behaviors.

Each experiment shown is represented by (a) a set of holding cost functions (not drawn to scale)

and (b) the corresponding simulation results. We experiment with small and large jobs, where

holding cost functions drawn in red or orange correspond to a class with shorter jobs, while those

drawn in blue correspond to a class with larger jobs. We experiment with different arrival rates,

shown as a proportion of the total arrival rate, λ, across all classes, where λ is specified by the load.

Figure 7a considers an experiment where class 1 jobs (the shorter ones) only incur a holding cost

after a deadline is passed, while class 2 jobs (the longer ones) incur a steady (but low) holding

cost. In this figure, the arrival rate of class 1 is much higher than that of class 2. Figure 7b shows

the corresponding results. We see that FCFS is by far the worst policy. The generalized cµ rule

improves upon FCFS, and Aalto improves upon that. Our policy (shown in red) is significantly

better than all the others, except for Preemptive Priority, which is equal to our policy here.

4This is a simplification of Aalto’s policy to the case of exponential job sizes.
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To understand what’s going on, we first observe that we should be prioritizing class 1 jobs ahead

of their deadline, given that the cost of missing the deadline is so high. The cµ rule only prioritizes

class 1 at the deadline point. The Aalto policy improves upon the cµ rule, by prioritizing class 1

jobs in advance of the deadline, but it doesn’t do so early enough (because Aalto doesn’t consider

load). Our policy improves upon the Aalto policy by prioritizing class 1 jobs even earlier – in fact

a better time to start prioritizing class 1 jobs is at age 0, which is what the Preemptive Priority

policy does.

(a) Holding cost functions. (b) Performance of policies.

Figure 7: Comparison of policies on holding cost functions with one deadline. We fix µ1 “ 3, µ2 “ 1, λ1 “

0.9λ.

Figure 8a considers an experiment where both class 1 jobs (the short ones) and class 2 jobs (the

long ones) only incur holding costs after their respective deadlines are passed. Here class 1 jobs

incur a high penalty after a late deadline, while class 2 jobs incur a low penalty after an early

deadline. The two classes have equal arrival rates. Figure 8b shows the corresponding results. We

see that our policy is noticeably better than all the others, except for Aalto’s policy, which we

only negligibly dominate. Our policy noticeably dominates Preemptive-Priority, which noticeably

dominates generalized cµ which significantly dominates FCFS.

To understand what’s going on, observe that it is again useful to prioritize jobs ahead of their

deadlines, which explains why we outperform FCFS and generalized cµ. Strict priority is no longer

effective here, because the deadlines are further out, so always prioritizing the class 1 jobs can be

suboptimal. Our policy’s performance is similar to Aalto for two reasons: First, because the arrival

rates are balanced, we find that when load is not too high, λi is small compared to µi, and our

policy is similar to Aalto’s policy. Second, while our policy looks further into the future, it does so

for both classes, and hence the benefit in some sense “cancels out,” leaving us with a policy similar

to Aalto.

Figure 9a considers an experiment where jobs have polynomial holding cost functions. Specifically,

class 1 jobs (the shorter ones) have a linear holding cost, while class 2 jobs (the longer ones) have a

quadratic holding cost. We set the arrival rates such that the loads from both classes are balanced.

Figure 9b shows the corresponding results. We see that our policy significantly outperforms FCFS

and Preemptive-Priority; however, our policy only negligibly beats generalized cµ and Aalto.

To understand why the three dominant policies (our policy, generalized cµ and Aalto) are similar,

we note that, for the polynomial holding cost functions, these three policies have index functions

which are polynomials with the same leading coefficient. Consequently, their behaviors are similar.
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(a) Holding cost functions. (b) Performance of policies.

Figure 8: Comparison of policies on holding cost functions with deadlines. We fix µ1 “ 3, µ2 “ 1, λ1 “ 0.5λ.

(a) Holding cost functions. (b) Performance of policies.

Figure 9: Comparison of policies on polynomial holding cost functions. We fix µ1 “ 3, µ2 “ 1, λ1 “ 0.75λ.

We often find that these three policies perform similarly and vastly improve upon the other policies.

Lastly, Figure 10a considers the case with three job classes. Specifically, class 1 and class 2 jobs

(shorter jobs) have linear interleaving holding cost functions, while class 3 jobs (longer jobs) have

explosive quadratic holding cost. Figure 10b shows the corresponding results. We see that our

policy noticeably improves upon Aalto, which noticeably improves upon generalized cµ, which

noticeably improves upon Preemptive-Priority, which significantly improves upon FCFS.

The strict ordering of policies, depicted in Figure 10b is typical of what we see in many experiments,

regardless of the number of classes. This strict separation would also be more obvious in Figure 9a

if we set both holding costs to be higher. When the costs are higher, the small differences between

the policies are more amplified.

Another policy which we experimented with is the Accumulated Priority policy from [23, 10].

However we found that this policy never improved upon our policy in our experiments and was

often significantly worse than our policy, so we chose to omit it to keep the graphs cleaner.
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(a) Holding cost functions. (b) Performance of policies.

Figure 10: Comparison of policies on 3 classes. We fix µ1 “ µ2 “ 3, µ3 “ 1, λ1 “ λ2 “ λ3.

6 Discussion on Optimality

Our policy replicates the diffusion limit optimality of the generalized cµ rule [24]. The diffusion

limit regime in [24] is equivalent to λi “ Θpnq, µi “ Θpnq, λi
µi

“ 1 ´ Θp 1?
n

q where n Ñ 8. Thus we

have that µi ´ λi Ñ 8. This indicates that our policy degenerates to the generalized cµ rule, and

hence is optimal as well.

We have seen that our policy performs well in simulation. However, like all the other Whittle-based

heuristics we’ve discussed, our policy is not always optimal. We now give a counter example.

Assume that there are two classes of jobs, both with the same instantaneous holding cost function

cptq “ t. Both classes have the same completion rate, but the arrival rates are different. Since the

holding cost functions and the completion rates are the same in both classes, the optimal policy is

FCFS, which is clearly not our policy. Thus, while our Whittle Index policy performs really well

compared with other existing policies, there is still a need for further work on optimality.

7 Conclusion

This paper studies the classical TVHC problem: Jobs of different classes arrive over time, where

each class of jobs is associated with a holding cost that increases with the job’s age. The objective

is to schedule the jobs so as to minimize the expected time-average total holding cost.

Various papers have provided heuristics for the TVHC problem. The generalized cµ rule [24]

provides a simple index policy which favors jobs with currently high holding cost and high failure

rate; this policy is asymptotically optimal in the diffusion limit. More recent works by Aalto [1],

consider the more tractable static setting (no arrivals).

Our work, while also heuristic, takes a principled approach to the TVHC problem with arrivals: (i)

We derive the first representation of our problem as an R-MAB with a finite number of arms, and

(ii) We derive a novel Whittle index policy for the resulting R-MAB. While the analysis is involved,

the resulting policy is extremely simple and elegant and incorporates class load. In simulation, our

policy improves upon all the other known heuristics.

This story is in no way finished. First, our policy might be generalizable beyond exponential job
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size distributions, to those with increasing hazard rate, using our existing R-MAB as a foundation

(although this would require a more complex state space). Second, there is much more work needed

to find an optimal policy.
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A Tutorial on The Whittle Index

The Whittle Index approach was introduced by Whittle in 1988 to develop a heuristic for R-

MAB problems ([25]), especially for discounted R-MAB problems. There are recent works proving

asymptotic optimality of the Whittle Index (e.g., [6]); even when not optimal, the Whittle Index

has long been shown to be a surprisingly good heuristic (see [20] for a recent review).

The standard Whittle approach (for discounted R-MAB problems) consists of three steps:

1. First, the hard constraint that only one arm can be pulled at a time is relaxed to a time-

average constraint. Mathematically, suppose the action for arm i at time step t is aiptq, where

aiptq “ 1 if the action is active and aiptq “ 0 otherwise. The hard constraint is

ÿ

i

aiptq ď 1, @t.

Whittle relaxes the hard constraint to the following time-average constraint:

8
ÿ

t“0

αt
k

ÿ

i“1

aiptq ď
1

1 ´ α
,

where α is the discount factor. Through this relaxation, the optimization problem becomes

more tractable. The relaxed R-MAB is studied to obtain a heuristic for the original R-MAB.

2. Next, a Lagrange method is applied to the relaxed R-MAB. Crucially the Lagrange dual

function can be decomposed into k independent parts, and accordingly the relaxed R-MAB

problem can be decomposed to k independent single-arm restless bandit problems, where not

pulling the arm earns a compensation of ℓ: ℓ serves as the Lagrange multiplier. This step

effectively puts a “price” on choosing to keep an arm active, yielding k single-arm optimization

problems, each parameterized by ℓ.

3. Then, one solves each single-arm problem to figure out the critical value of ℓ for each state

of each problem, which is the exact point where one is indifferent between being active and

passive. This critical value of ℓ measures the “value” of pulling this arm at each state, and

serves as the Whittle Index.

4. Finally, the Whittle Index policy pulls the arm with the largest Whittle Index at every

moment of time.

In the literature, people usually skip the first two steps and directly analyze the single-arm bandit

problem (e.g., [2, 1].) In this paper, we will likewise omit the first two steps and directly provide

the single-arm bandit formulation in Section 4.1.
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A property of the single-arm bandit problem called “indexability” needs to be established for the

Whittle Index to be well-defined. Intuitively, indexability states that as the compensation ℓ grows

larger, the optimal action at a certain state can only change from active to passive. This property

ensures that the Whittle Index is unique and well-defined. Although indexability is intuitive, it

must be proven [25].

B Proof for Lemma 3.1

Lemma B.1 (FCFS within each type is optimal). The optimal policy must serve jobs within each

type in FCFS order.

Proof. For any policy π, we define a policy πFCFS where πFCFS serves a type i job if and only

if π serves a type i job, but πFCFS always serves FCFS within each type. We will show that the

time-average total holding cost under πFCFS is no higher than that of π on every sample path.

We now show how to define the sample path that allows us to compare between π and πFCFS . It is

important to observe that the result of this lemma does not hold for the obvious sample path, which

is based on job arrival times and sizes (think about SRPT within each class, which can improve

upon FCFS within each class). Thus we need to define our sample path to leverage the fact that

job sizes are memoryless.

We define the sample path as 2 sequences of exponential random variables for each of the k classes.

The first sequence for class i represents inter-arrival times of class i jobs. These are clearly dis-

tributed as Exppλiq. The second sequence for class i represents inter-departure times of class i jobs,

where we only look at the system when a class i job is being served. One can imagine that there

is an Exppµiq timer for class i which is paused when the system is working on a job of some type

other than class i, and resumes when the system returns to working on a class i job. Whenever the

timer goes off, the class i job currently being served completes. Note that there might be multiple

type i jobs running during the time before the timer goes off.

We now consider the behavior of policies π and πFCFS under a fixed sample path that consists of

the 2k exponential sequences. Note that πFCFS works on a type i job if and only if π works on

a type i job. Thus the exponential timers go off at the same time under both policies. Suppose

the timer for class i goes off at times td1 ă d2 ă ...u, at which times a type i job completes and

departs. Also let the jth class i job’s arrival time be denoted by aj .

Given that πFCFS serves type i jobs in FCFS order, we have that the jth type i job leaves at time

dj . Define ppjq to be a permutation such that dppjq is the departure time of the jth type i job under

π. Now we look at the total holding cost incurred by policies π and πFCFS .

For any type i, the total holding cost of πFCFS incurred by the first N type i jobs is

N
ÿ

j“1

ż dj´aj

0
ciptqdt, (33)

while that of π is
N
ÿ

j“1

ż dppjq´aj

0
ciptqdt. (34)

26



Observe that (33) is smaller than (34) by the monotonocity and convexity of the function
şx
0 ciptqdt

with respect to x. This completes the proof.

C Proof for Theorem 1

Theorem C.1 (Equivalence of TVHC and R-MAB Problems). For any set of non-decreasing index

functions tVip¨quki“1, the corresponding index policies (breaking ties by FCFS) in the TVHC problem

and the R-MAB problem incur the same cost.

Proof. In this appendix, we construct a coupling between the TVHC problem and the R-MAB

problem on a certain sample path.

Define a sample path to be 2k sequences of exponential variables: tai0, ai1, ai2, ...u where aij „

Exppλiq and tsi1, si2, ...u where sij „ Exppµiq. Under this sample path, the index policies tViu run

as follows:

1. The TVHC Problem: The first type i job enters at time ai0. The inter-arrival time of type i

jobs are aij . The jth type i job has size sij .

2. The R-MAB Problem: The arm i is initialized at state ´ai0. After the arm is active for sij
time, it triggers the jth state drop, and the dropping amount is aij .

Under a fixed sample path, define Tiptq to be the state of the arm i in the bandit problem, and

define Aiptq to be the age of the oldest type i job in the system in the scheduling problem (if there

is no type i job, Aiptq ă 0 and ´Aiptq is the time until the next arrival of a type i job). We next

prove that Tiptq “ Aiptq for all t.

To prove this fact, we define ξiptq in the bandit problem to be the total time that arm i is active

since the last time the state of arm i dropped. We also define a counter, countBi ptq, to be the

number of state drops of arm i by time t. We define τiptq in the scheduling problem to be the total

service time that the oldest type i has received at time t. We also define a counter, countSi ptq, to

be the number of type i job completions by time t.

Then in the bandit problem, the triple pTiptq, ξiptq, count
B
i ptqq is initialized to be p´ai0, 0, 0q and
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has the following transition function at time t:

If i “ argmax
j

tVjpTjptqqu and Tiptq ě 0 :

If ξiptq ă si,countBi ptq :

Tipt ` δq “ Tiptq ` δ

ξipt ` δq “ ξiptq ` δ

countBi pt ` δq “ countBi ptq

Else:

Tipt ` δq “ Tiptq ` δ ´ ai,countBi ptq

ξipt ` δq “ 0

countBi pt ` δq “ countBi ptq ` 1

Else:

Tipt ` δq “ Tiptq ` δ

ξipt ` δq “ ξiptq

countBi pt ` δq “ countBi ptq

(35)

While we’re in the TVHC problem, the triple pAiptq, τiptq, count
S
i ptqq follows the same exact tran-

sition function. In this way we prove that Aiptq “ Tiptq under a fixed sample path.

Now we prove that the expected cost under the two problems is the same. For the TVHC problem,

the long-run average holding cost of type i is the expected total type i holding cost at a uniformly

random time t˚, which is
ÿ

j: type i job in the system at t˚

cipapjqq,

where apjq is the age of the job j. Denote the oldest age among all type i jobs in the system by

Aipt
˚q. Since the policy runs FCFS within each type, the other type i jobs’ inter-arrival times

are independent of Aipt
˚q, which means tapjq : j is a type i job in the systemu is distributed as

Poisλi
pAipt

˚qq. Thus we have that

E

»

–

ÿ

j: type i job in the system at t˚

cipapjqq

fi

fl “ ripAipt
˚qq.

Note that Ai has the same distribution as Ti due to the coupling sample path argument above.

Therefore we have that the expected cost in the two problems are the same.

D Deferred proofs in Section 4.3.3

Lemma D.1. When t Ñ 8, limtÑ8
ĘCostpt, αqe

´ α
1´γ1

t
“ 0 and limtÑ8 E rrpt ` Xqs e

´ α
1´γ1

t
“ 0.
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Proof.

lim
tÑ8

ĘCostpt, αqe
´ α

1´γ1
t

“ lim
tÑ8

E

„
ż T1

0
αe´αsrpt ` Apsqqds

ȷ

e
´ α

1´γ1
t

ď lim
tÑ8

E

„
ż T1

0
αrpt ` Apsqqds

ȷ

e
´ α

1´γ1
t

“ lim
tÑ8

α
1

µ ´ λ
E rrpt ` Aqs e

´ α
1´γ1

t
where A „ Exppµ ´ λq5

p˚q

ď lim
tÑ8

α

µ ´ λ
E rrpt ` Aqs e´pµ´λqt

“ 0.

lim
tÑ8

E rrpt ` Xqs e
´ α

1´γ1
t

“ lim
tÑ8

ż 8

0
rpt ` xqe

´ α
1´γ1

t α

1 ´ γ1
e

α
1´γ1

x
dx

“ lim
tÑ8

ż 8

0
rpt ` xqe

´ α
1´γ1

pt`xq α

1 ´ γ1
e

α
1´γ1

2x
dx

p˚q
“ lim

tÑ8

1

2

ż 8

0
rpt ` xqe´pµ´λqpt`xq 2α

1 ´ γ1
e

α
1´γ1

2x
dx

“ lim
tÑ8

e´pµ´λqt 1

2

ż 8

0
rpt ` xqe´pµ´λqx 2α

1 ´ γ1
e

α
1´γ1

2x
dx

“ 0.

where the steps p˚q are obtained by using

α

1 ´ γ1
“

α

1 ´ E re´αT1s
ě

1

E rT1s
“ µ ´ λ,

and the inequality is obtained by 1 ´ e´αx ď αx.

Lemma D.2. Let T2 „ Exppλq, X „ Expp α
1´γ1

q. Then we have the following equations:

E
“

r1pt ´ T2q
‰

“ λcptq. (36)

E rrpt ´ T2qs “ rptq ´ cptq. (37)

E
“

r1pt ` Xq
‰

“
µ

γ1
E rcpt ` Xqs ´

α

1 ´ γ1
cptq. (38)

E rrpt ` Xqs “ rptq ´ cptq `
µp1 ´ γ1q

γ1α
E rcpt ` Xqs . (39)

Proof. We prove the four equations by using Lemma 4.14 and Lemma 4.16:

E
“

r1pt ´ T2q
‰

“ E
“

c1pt ´ T2q
‰

` λE rcpt ´ T2qs Lemma 4.16

“ λpcptq ´ E rcpt ´ T2qsq ` λE rcpt ´ T2qs Lemma 4.14

“ λcptq.

5A denotes the age of the oldest job in an M/M/1 queue, and A „ Exppµ ´ λq given A ą 0.
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E rrpt ´ T2qs “ rptq ´
1

λ
E

“

r1pt ´ T2q
‰

“ rptq ´ cptq.

E
“

r1pt ` Xq
‰

“ E
“

c1pt ` Xq
‰

` λE rcpt ` Xqs Lemma 4.16

“
α

1 ´ γ1
pE rcpt ` Xqs ´ cptqq ` λE rcpt ` Xqs Lemma 4.14

“
µ

γ1
E rcpt ` Xqs ´

α

1 ´ γ1
cptq Equation (9).

E rrpt ` Xqs “ rptq `
1 ´ γ1

α
E

“

r1pt ` Xq
‰

“ rptq ´ cptq `
µp1 ´ γ1q

γ1α
E rcpt ` Xqs .

E Proof for indexability

The goal of this appendix section is to prove Theorem E.3. We need several lemmas for the proof.

We first characterize the optimal policy. Specifically, we show that the policy Thresholdpt0q is opti-

mal when the compensation ℓ “ xW pt0, αq. This is proved by showing the Hamilton–Jacobi–Bellman

equation is satisfied.

Lemma E.1. The optimal policy under compensation xW pt0, αq is the policy Thresholdpt0q.

Proof. It suffices to prove that the policy Thresholdpt0q satisfies the Hamilton–Jacobi–Bellman

equation. Let V ptq denote the value function of the policy at state t.

At state t, if during the next δ time the action is passive, the total cost is

passiveptq :“ pαrptq ´ ℓqδ ` e´αδV pt ` δq. (40)

Moreover, if the action is active, the total cost is

activeptq :“ pαrptqqδ ` e´αδ pp1 ´ µδqV pt ` δq ` µδE rV pt ` δ ´ T2qsq , (41)

where T2 „ Exppλq. Thus the Hamilton–Jacobi–Bellman equation is equivalent to

t ď t0 ñ lim
δÑ0

passiveptq ´ activeptq

δ
ď 0. (42)

t ě t0 ñ lim
δÑ0

passiveptq ´ activeptq

δ
ě 0. (43)

By (40) and (41), it is further equivalent to

t ď t0 ñ ℓ ě µ pV ptq ´ E rV pt ´ T2qsq . (44)

t ě t0 ñ ℓ ď µ pV ptq ´ E rV pt ´ T2qsq . (45)
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Case 1: t ď t0. In this case, we want to prove (44).

Note that the policy stays passive when the state is smaller then t0. Thus we have that

V ptq “

ż t0´t

0
pαrpt ` sq ´ ℓqe´αsds ` e´αpt0´tqV pt0q

“

ż t0´t

0
αrpt ` sqe´αsds ` e´αpt0´tqV pt0q ´ p1 ´ e´αpt0´tqq

ℓ

α
. (46)

E rV pt ´ T2qs “ E

„
ż T2

0
pαrpt ´ T2 ` sq ´ ℓqe´αsds

ȷ

` E
“

e´αT2
‰

V ptq

“ Γpt, αq ´
ℓ

α
p1 ´ γ2q ` γ2V ptq. (47)

Thus, using (32), (47),(46), we have that (44) is equivalent to

E rcpt0 ` Xqs ě p1 ´ γ2q

ˆ
ż t0´t

0
αrpt ` sqe´αsds ` e´αpt0´tqpV pt0q `

ℓ

α
q

˙

´ Γpt, αq. (48)

Using (10), (22), (27), (29), (30) and (32), we have that

V pt0q “
1

1 ´ γ1γ2

ˆ

ĘCostpt0, αq ` γ1Γpt0, αq ´
ℓ

α
γ1p1 ´ γ2q

˙

(10)

“
1

1 ´ γ1γ2

ˆ

p1 ´ γ1qE rrpt0 ` Xqs ` γ1p1 ´ γ2qE rrpt0 ´ T2qs ´
ℓ

α
γ1p1 ´ γ2q

˙

by (22), (27)

“
1

1 ´ γ1γ2

ˆ

p1 ´ γ1q

ˆ

rpt0q ´ cpt0q `
µp1 ´ γ1q

γ1α
E rcpt0 ` Xqs

˙

by (31)

` γ1p1 ´ γ2qprpt0q ´ cpt0qq ´
ℓ

α
γ1p1 ´ γ2q

˙

by (29)

“
1

1 ´ γ1γ2

ˆ

p1 ´ γ1q

ˆ

rpt0q ´ cpt0q `
1 ´ γ1
γ1α

ℓ

˙

by (32)

` γ1p1 ´ γ2qprpt0q ´ cpt0qq ´
ℓ

α
γ1p1 ´ γ2q

˙

“rpt0q ´ cpt0q `
1

1 ´ γ1γ2

ˆ

p1 ´ γ1q2

γ1
´ γ1p1 ´ γ2q

˙

ℓ

α

“rpt0q ´ cpt0q ´
ℓ

α
`

1 ´ γ1
γ1p1 ´ γ1γ2q

ℓ

α

“rpt0q ´ cpt0q ´
ℓ

α
`

λ ` α

µ

ℓ

α
. by (9)

(49)
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Thus again using (9), we have that (48) is equivalent to

E rcpt0 ` Xqs ě p1 ´ γ2q

ˆ
ż t0´t

0
αrpt ` sqe´αsds ` e´αpt0´tq

ˆ

rpt0q ´ cpt0q `
1

1 ´ γ2

ℓ

µ

˙˙

´ Γpt, αq.

Using (27), (29), (9) and reordering the terms, the inequality is further equivalent to

´

1 ´ e´αpt0´tq
¯

E rcpt0 ` Xqs ` p1 ´ γ2q

´

´e´αpt0´tqprpt0q ´ cpt0qq ` rptq ´ cptq
¯

ě p1 ´ γ2q

ż t0´t

0
αrpt ` sqe´αsds. (50)

Note that the right hand side of (50) can be simplified to:

p1 ´ γ2q

ż t0´t

0
αrpt ` sqe´αsds

“ p1 ´ γ2q

˜

´rpt ` sqe´αs

ˇ

ˇ

ˇ

ˇ

t0´t

0

`

ż t0´t

0
r1pt ` sqe´αsds

¸

“ p1 ´ γ2q

ˆ

rptq ´ e´αpt0´tqrpt0q `

ż t0´t

0
pc1pt ` sq ` λcpt ` sqqe´αsds

˙

Lemma 4.16

ď p1 ´ γ2q

ˆ

rptq ´ e´αpt0´tqrpt0q `

ż t0´t

0
c1pt ` sqds `

ż t0´t

0
λcpt0qe´αsds

˙

“ p1 ´ γ2q

ˆ

rptq ´ e´αpt0´tqrpt0q ` cpt0q ´ cptq `
λ

α
p1 ´ e´αpt0´tqqcpt0q

˙

.

Thus to prove (50), we only need to prove that

1

1 ´ γ2

´

1 ´ e´αpt0´tq
¯

E rcpt0 ` Xqs `

´

´e´αpt0´tqprpt0q ´ cpt0qq ` rptq ´ cptq
¯

ě rptq ´ e´αpt0´tqrpt0q ` cpt0q ´ cptq `
λ

α
p1 ´ e´αpt0´tqqcpt0q,

which is equivalent to

E rcpt0 ` Xqs ě cpt0q.

This holds by monotonocity of c.

Case 2: t ą t0. In this case, we want to prove

ℓ ď µ pV ptq ´ E rV pt ´ T2qsq . (51)

Note that starting from state t, the policy stays active until the state drops back to t, during which

time a ĘCostpt, αq cost is incurred. After the state drops below t, since each time the state drops by

an exponential amount, the state is t ´ T2. Thus we have that

V ptq “ ĘCostpt, αq ` γ1E rV pt ´ T2qs . (52)
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Substituting (52) into (51) and using (32), we only need to prove that

E rcpt0 ` Xqs ď ´
1 ´ γ1
γ1

V ptq `
1

γ1
ĘCostpt, αq. (53)

Now we characterize V ptq. Starting from state t, the policy stays active until the state drops below t.

During this time (T1, which follows the Busy period in M/M/1 distribution), a cost of ĘCostpt, αq is

incurred. After the state drops below t, the amount it is below t follows on exponential distribution

with rate λ. Suppose it is y1 „ t ´ Exppλq. If y1 is still larger than t0, the policy stays active until

the state drops below y1, incurring another ĘCostpy1, αq cost. This process continues until the state

drops below t0. Note that each time a ĘCostpyi, αq is incurred, the state drops by an exponential

amount, thus the total number of iterations follow a Poisson distribution Poispλpt´ t0qq. After the

final iteration, the state is Exppλq below t0, and the policy stays passive until the state grows back

to t0.

Thus we have that

V ptq “ ĘCostpt, αq`γ1E

«

M
ÿ

i“1

γi´1
1

ĘCostpyi, αq

ff

`E
”

γM`1
1

ı

ˆ

Γpt0, αq ´
ℓ

α
p1 ´ γ2q ` γ2V pt0q

˙

, (54)

where y1 “ t´Exppλq, yi`1 “ yi´Exppλq, andM is the random variable such that yM ě t0, yM`1 ă

t0, with M „ Poispλpt´ t0qq. By the probability generating function of a Poisson variable, we have

that

E
”

γM`1
1

ı

“ γ1PGF pγ1q “ γ1e
´λpt´t0qp1´γ1q. (55)

Define Ωpt, t0q :“ E
”

řM
i“1 γ

i´1
1

ĘCostpyi, αq

ı

. We treat t0 as constant and vary t by δ. Note that

tyiu is distributed as Poisson arrivals in time pt0, tq, we discuss different cases based on the number

of yi in the interval pt, t ` δq, denoted by N . Note that N follows the distribution Poispλδq.

If N “ 0 (with probability e´λδ), Ωpt ` δ, t0q “ Ωpt, t0q.

If N “ 1 (with probability λδe´λδ), we have that

Ωpt ` δ, t0q “ ĘCostpt ` ∆, t0q ` γ1Ωpt, t0q,

where 0 ă ∆ ă δ.

The probability that N ą 1 is Opδ2q.

Thus we have that

Ωpt ` δ, t0q “ e´λδΩpt, t0q ` λδe´λδ
`

ĘCostpt ` ∆, αq ` γ1Ωpt, t0q
˘

` Opδ2q. (56)

Therefore,

Ω1pt, t0q :“ lim
δÑ0

Ωpt ` δ, t0q ´ Ωpt, t0q

δ

“ lim
δÑ0

e´λδ ` λδe´λδγ1 ´ 1

δ
Ωpt, t0q ` λe´λδ

ĘCostpt ` ∆, αq

“ pλγ1 ´ λqΩpt, t0q ` λĘCostpt, αq. (57)
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Note that this is a first-order ODE with respect to t. Using Lemma 4.13 and treating y “

Ωpt, t0q, P ptq “ λp1 ´ γ1q, Qptq “ λĘCostpt, αq, we have that

Ωpt, t0q “ e´λp1´γ1qt

ˆ
ż

eλp1´γ1qtλĘCostpt, αqdt ` C

˙

.

Noting that Ωpt0, t0q “ 0, we have that

Ωpt, t0q “ e´λp1´γ1qt

ż t

t0

eλp1´γ1qsλĘCostps, αqds

“

ż t

t0

e´λp1´γ1qpt´sqλĘCostps, αqds. (58)

Now substituting (58) and (55) into (54), we have that

V ptq “ĘCostpt, αq ` γ1Ωpt, t0q ` E
”

γM`1
1

ı

ˆ

Γpt0, αq ´
ℓ

α
p1 ´ γ2q ` γ2V pt0q

˙

“ĘCostpt, αq ` γ1

ż t

t0

e´λp1´γ1qpt´sqλĘCostps, αqds

` γ1e
´λpt´t0qp1´γ1q

ˆ

Γpt0, αq ´
ℓ

α
p1 ´ γ2q ` γ2V pt0q

˙

. (59)

Moreover, we have that

ż t

t0

e´λp1´γ1qpt´sqλĘCostps, αqds “
1

1 ´ γ1
e´λp1´γ1qpt´sq

ĘCostps, αq

ˇ

ˇ

ˇ

ˇ

t

t0

´

ż t

t0

1

1 ´ γ1
e´λp1´γ1qpt´sq

ĘCost
1
ps, αqds

“
1

1 ´ γ1

´

ĘCostpt, αq ´ e´λp1´γ1qpt´t0q
ĘCostpt0, αq

¯

´

ż t

t0

1

1 ´ γ1
e´λp1´γ1qpt´sq

ĘCost
1
ps, αqds. (60)

By (9), (27), (29) and (49), we have that

Γpt0, αq ´
ℓ

α
p1 ´ γ2q ` γ2V pt0q

“ p1 ´ γ2qprpt0q ´ cpt0qq ´
ℓ

α
p1 ´ γ2q ` γ2

ˆ

rpt0q ´ cpt0q ´
ℓ

α
`

λ ` α

µ

ℓ

α

˙

“ rpt0q ´ cpt0q ´
ℓ

α
`

λ

α

ℓ

µ
. by (9) (61)
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Thus substituting (60) and (61) into (59), we have that

V ptq “ĘCostpt, αq `
γ1

1 ´ γ1

´

ĘCostpt, αq ´ e´λp1´γ1qpt´t0q
ĘCostpt0, αq

¯

´

ż t

t0

γ1
1 ´ γ1

e´λp1´γ1qpt´sq
ĘCost

1
ps, αqds

` γ1e
´λpt´t0qp1´γ1q

ˆ

rpt0q ´ cpt0q ´
ℓ

α
`

λ

α

ℓ

µ

˙

(62)

Note that by (22), (31) and (32),

ĘCostpt0, αq “ p1 ´ γ1qprpt0q ´ cpt0q `
1 ´ γ1
γ1

ℓ

α
q.

Thus, we have that

V ptq “
1

1 ´ γ1
ĘCostpt, αq ´

γ1
1 ´ γ1

e´λp1´γ1qpt´t0q
ĘCostpt0, αq

´

ż t

t0

γ1
1 ´ γ1

e´λp1´γ1qpt´sq
ĘCost

1
ps, αqds

` γ1e
´λpt´t0qp1´γ1q

ˆ

rpt0q ´ cpt0q ´
ℓ

α
`

λ

α

ℓ

µ

˙

“
1

1 ´ γ1
ĘCostpt, αq ´ γ1e

´λp1´γ1qpt´t0q

ˆ

rpt0q ´ cpt0q `
1 ´ γ1
γ1

ℓ

α

˙

´

ż t

t0

γ1
1 ´ γ1

e´λp1´γ1qpt´sq
ĘCost

1
ps, αqds

` γ1e
´λpt´t0qp1´γ1q

ˆ

rpt0q ´ cpt0q ´
ℓ

α
`

λ

α

ℓ

µ

˙

“
1

1 ´ γ1
ĘCostpt, αq ` γ1e

´λp1´γ1qpt´t0q

ˆ

λ

µ
´

1

γ1

˙

ℓ

α

´

ż t

t0

γ1
1 ´ γ1

e´λp1´γ1qpt´sq
ĘCost

1
ps, αqds (63)

Now look back to our goal, which is proving (53):

E rcpt0 ` Xqs ď ´
1 ´ γ1
γ1

V ptq `
1

γ1
ĘCostpt, αq.

This is equivalent to proving

V ptq ´
1

1 ´ γ1
ĘCostpt, αq ď ´

γ1
1 ´ γ1

E rcpt0 ` Xqs .
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By (63), our goal is equivalent to proving

γ1e
´λp1´γ1qpt´t0q

ˆ

λ

µ
´

1

γ1

˙

ℓ

α
´

ż t

t0

γ1
1 ´ γ1

e´λp1´γ1qpt´sq
ĘCost

1
ps, αqds ď ´

γ1
1 ´ γ1

E rcpt0 ` Xqs

Rearranging the terms and using (32), our goal is equivalent to proving that

E rcpt0 ` Xqs

ˆ

γ1
1 ´ γ1

` e´λp1´γ1qpt´t0q

ˆ

λγ1
α

´
µ

α

˙˙

ď

ż t

t0

γ1
1 ´ γ1

e´λp1´γ1qpt´sq
ĘCost

1
ps, αqds.

(64)

Note that by (22) and (31), we have that

ĘCostpt, αq “ p1 ´ γ1qprptq ´ cptq `
µp1 ´ γ1q

γ1α
E rcpt ` Xqsq.

Thus using Lemma 4.16 and (9),

ĘCost
1
pt, αq “ p1 ´ γ1q

ˆ

λcptq `
µp1 ´ γ1q

γ1α
E

“

c1pt ` Xq
‰

˙

“ p1 ´ γ1q

ˆ

λcptq `
λ ` α ´ λγ1

α
E

“

c1pt ` Xq
‰

˙

.

Moreover, by (9),
λγ1
α

´
µ

α
“

1

α
pλγ1 ´

pλ ` α ´ λγ1qγ1
1 ´ γ1

q “ ´
γ1

1 ´ γ1
,

Thus we have that our goal, equivalent to (64), is equivalent to showing that

E rcpt0 ` Xqs
1

1 ´ γ1

´

1 ´ e´λp1´γ1qpt´t0q
¯

ď

ż t

t0

e´λp1´γ1qpt´sq

ˆ

λcpsq `
λ ` α ´ λγ1

α
E

“

c1ps ` Xq
‰

˙

ds.

(65)

Finally, we have that for any s ą t0,

λcpsq `
λ ` α ´ λγ1

α
E

“

c1ps ` Xq
‰

“ λcpsq `
λ ` α ´ λγ1

α
¨

α

1 ´ γ1
pE rcps ` Xqs ´ cpsqq Lemma 4.14

“

ˆ

λ ´
λ ` α ´ λγ1

1 ´ γ1

˙

cpsq `
λ ` α ´ λγ1

1 ´ γ1
E rcps ` Xqs

“ ´
α

1 ´ γ1
cpsq `

λ ` α ´ λγ1
1 ´ γ1

E rcps ` Xqs

ě

ˆ

´
α

1 ´ γ1
`

λ ` α ´ λγ1
1 ´ γ1

˙

E rcps ` Xqs

“ λE rcps ` Xqs

ě λE rcpt0 ` Xqs .
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Thus

ż t

t0

e´λp1´γ1qpt´sq

ˆ

λcpsq `
λ ` α ´ λγ1

α
E

“

c1ps ` Xq
‰

˙

ds

ě

ż t

t0

e´λp1´γ1qpt´sqλE rcpt0 ` Xqs ds

“ E rcpt0 ` Xqs
1

1 ´ γ1

´

1 ´ e´λp1´γ1qpt´t0q
¯

.

To prove indexability, there are actually two other corner cases to prove.

Lemma E.2. 1. If the compensation ℓ ď µE rcpXqs, always active (except at state 0) is optimal.

2. If limtÑ8 µE rcpt ` Xqs “ M exists and the compensation ℓ ě µM , always passive is optimal.

Proof. To prove the first argument, the argument is the same as what we have in Case 2 of the

proof of Lemma E.1. Now we prove the second argument.

Since limtÑ8 µE rcpt ` Xqs “ M exists and c is monotone, we have that limtÑ8 cptq “ M .

For the policy “always passive”, we can derive the value function:

V ptq “

ż 8

0
pαrpt ` sq ´ ℓqe´αsds

“

ż 8

0
αrpt ` sqe´αsds ´

ℓ

α

“ ´rpt ` sqe´αs

ˇ

ˇ

ˇ

ˇ

8

0

´

ż 8

0
´r1pt ` sqe´αsds ´

ℓ

α

“ rptq `

ż 8

0
pc1pt ` sq ` λcpt ` sqqe´αsds ´

ℓ

α
. Lemma 4.16 (66)

Now we verify that this value function satisfies the Hamilton–Jacobi–Bellman equation, which is

equivalent to showing:

lim
δÑ0

passiveptq ´ activeptq

δ
ď 0.

By the same argument in (40) and (41), our goal is equivalent to showing

ℓ ě µpV ptq ´ E rV pt ´ T2qsq. (67)

Note that (47) still holds. Thus it suffices to prove that

ℓ ě µ

ˆ

p1 ´ γ2qpV ptq `
ℓ

α
q ´ Γpt, αq

˙

.

Using (66), (27) and (29), we only need to prove that

ℓ

µ
ě p1 ´ γ2q

ˆ

rptq `

ż 8

0
pc1pt ` sq ` λcpt ` sqqe´αsds ´ prptq ´ cptqq

˙

.
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Note that the right hand side can be bounded as follows:

p1 ´ γ2q

ˆ

rptq `

ż 8

0
pc1pt ` sq ` λcpt ` sqqe´αsds ´ prptq ´ cptqq

˙

ď p1 ´ γ2q

ˆ

cptq `

ż 8

0
c1pt ` sqds `

ż 8

0
λMe´αsds

˙

“ p1 ´ γ2qp lim
tÑ8

cptq `
λ

α
Mq

“ p1 ´ γ2q
λ ` α

α
M

“ M.

Since ℓ ě µM , we have the proof.

Finally we can prove indexability.

Theorem E.3 (Indexability). The discounted single-arm bandit problem is indexable with the Whit-

tle Index W pt0, αq “ xW pt0, αq.

Proof. We first prove indexability. Recall that

Πpℓq :“ tt0 | passive action at state t0 is optimalu.

Now we prove that for any ℓ1 ă ℓ2, we have that Πpℓ1q Ď Πpℓ2q.

If ℓ1 ď µE rcpXqs, by Lemma E.2, Πpℓ1q “ t0u, and the statement holds immediately.

If ℓ2 ě limtÑ8 µE rcpt ` Xqs, by Lemma E.2, Πpℓ2q “ R, and the statement holds immediately.

Otherwise, we have that for some t1, t2, ℓ1 “ xW pt1, αq, ℓ2 “ xW pt2, αq. Since xW pt, αq is non-

decreasing with t, we have that t1 ă t2. By Lemma E.1, Πpℓ1q “ tt | t ď t1u, and Πpℓ2q “ tt | t ď

t2u. Thus we prove the statement.

The proof that the Whittle Index is xW pt, αq is straightforward. Mathematically, we want to show

that
xW pt0, αq “ inf

ℓ
tt P Πpℓqu.

This follows immediately by Lemma E.2 and Lemma E.1.
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